In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data ...In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data at the bridge deck and at the top of the bridge tower are recorded. The average wind speeds and directions, variations of wind speeds with height, turbulent characteristics, spatial correlation and characteristics of wind flow around the bridge deck are analyzed by using statistical methods and spectral analysis. It is found that the average wind speeds along the bridge girder are almost identical; however, the mean wind directions vary greatly at different locations. The dimensionless exponent decreases as the average wind speed increases. The measured turbulence intensities are greater than the recommended values, and the turbulence power spectrum can well fit the standard spectrum. However, the measured spectral values are considerably smaller in low frequency ranges. The mean wind speed of the wake flow decreases and the turbulence intensity increases significantly, and the spectral characteristics of the wake flow change obviously while the feature frequency of vortex shedding has not yet been observed.展开更多
The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
基金The National Natural Science Foundation of China (No.90815022, 50808160)
文摘In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data at the bridge deck and at the top of the bridge tower are recorded. The average wind speeds and directions, variations of wind speeds with height, turbulent characteristics, spatial correlation and characteristics of wind flow around the bridge deck are analyzed by using statistical methods and spectral analysis. It is found that the average wind speeds along the bridge girder are almost identical; however, the mean wind directions vary greatly at different locations. The dimensionless exponent decreases as the average wind speed increases. The measured turbulence intensities are greater than the recommended values, and the turbulence power spectrum can well fit the standard spectrum. However, the measured spectral values are considerably smaller in low frequency ranges. The mean wind speed of the wake flow decreases and the turbulence intensity increases significantly, and the spectral characteristics of the wake flow change obviously while the feature frequency of vortex shedding has not yet been observed.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.