The SMOS(soil moisture and ocean salinity) mission undertaken by the European Space Agency(ESA) has provided sea surface salinity(SSS) measurements at global scale since 2009.Validation of SSS values retrieved from SM...The SMOS(soil moisture and ocean salinity) mission undertaken by the European Space Agency(ESA) has provided sea surface salinity(SSS) measurements at global scale since 2009.Validation of SSS values retrieved from SMOS data has been done globally and regionally.However,the accuracy of SSS measurements by SMOS in the China seas has not been examined in detail.In this study,we compared retrieved SSS values from SMOS data with in situ measurements from a South China Sea(SCS) expedition during autumn 2011.The comparison shows that the retrieved SSS values using ascending pass data have much better agreement with in situ measurements than the result derived from descending pass data.Accuracy in terms of bias and root mean square error(RMS) of the SSS retrieved using three different sea surface roughness models is very consistent,regardless of ascending or descending orbits.When ascending and descending measurements are combined for comparison,the retrieved SSS using a semi-empirical model shows the best agreement with in situ measurements,with bias-0.33 practical salinity units and RMS 0.74.We also investigated the impact of environmental conditions of sea surface wind and sea surface temperature on accuracy of the retrieved SSS.The SCS is a semi-closed basin where radio frequencies transmitted from the mainland strongly interfere with SMOS measurements.Therefore,accuracy of retrieved SSS shows a relationship with distance between the validation sites and land.展开更多
Internal waves can bring nutrients to the upper level of water bodies and facilitate phytoplankton photosynthesis.Internal waves occur frequently in the northern portion of the South China Sea and inflict an important...Internal waves can bring nutrients to the upper level of water bodies and facilitate phytoplankton photosynthesis.Internal waves occur frequently in the northern portion of the South China Sea and inflict an important effect on chlorophyll a distribution.In this study,in-situ observation and satellite remote sensing data were used to study the effects of internal waves on chlorophyll a distribution.Based on the in-situ observations,lower chlorophyll a concentrations were present in the middle and bottom level in areas in which internal waves occur frequently,while the surface chlorophyll a distribution increased irregularly,and a small area with relatively higher chlorophyll a concentrations was observed in the area around the Dongsha Island.Satellite remote sensing showed that the chlorophyll a concentration increased in the area near Dongsha Island,where internal waves frequently occurred.The results of the increased chlorophyll a concentration in the surface water near Dongsha Island in the northern portion of the South China Sea indicated that internal waves could uplift phytoplankton and facilitate phytoplankton growth.展开更多
An intelligent camera for surface defect inspection is presented which can pre-process the surface image of a rolled strip and pick defective areas out at a spead of 1 600 meters per minute. The camera is made up of a...An intelligent camera for surface defect inspection is presented which can pre-process the surface image of a rolled strip and pick defective areas out at a spead of 1 600 meters per minute. The camera is made up of a high speed line CCD, a 60 Mb/s CCD digitizer with correlated double sampling function, and a field programmable gate array(FPGA), which can quickly distinguish defective areas using a perceptron embedded in FPGA thus the data to be further processed would dramatically be reduced. Some experiments show that the camera can meet high producing speed, and reduce cost and complexity of automation surface inspection systems.展开更多
The quantification of the sheltering and exposure effects of non-uniform sediments has been widely achieved through hiding function models. Big challenge exists so far in the model parameter that is highly variable an...The quantification of the sheltering and exposure effects of non-uniform sediments has been widely achieved through hiding function models. Big challenge exists so far in the model parameter that is highly variable and differs greatly between laboratory flumes and field streams. This paper presents an improved surface-based hiding fimction. The force balance for particle inception was formulated and the allocation of the overall bed shear stress into each group of sediments was mimicked. The new hiding function was examined against and agrees well with the documented field and flume data. It was shown that the hiding fimction is closely related to the relative flow depth and the reference elevation in the velocity profile in addition to the bed material gradation. The power law of velocity profile that applies to both flume flows and natural streams can link the flume and field data together. The hiding function with b = 1/6 and b = 1/2 is applicable to natural streams and laboratory flumes, respectively. The value orb = 0.263 also works well for gravel bed rivers. The range of the reference elevation, namely z0 = 0.4Dm-1.4Dm, is recommended for either the flume or field data. The new hiding function contributes to addressing clearer physical meanings and a useful perspective for further improvement.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41006110,41106155)
文摘The SMOS(soil moisture and ocean salinity) mission undertaken by the European Space Agency(ESA) has provided sea surface salinity(SSS) measurements at global scale since 2009.Validation of SSS values retrieved from SMOS data has been done globally and regionally.However,the accuracy of SSS measurements by SMOS in the China seas has not been examined in detail.In this study,we compared retrieved SSS values from SMOS data with in situ measurements from a South China Sea(SCS) expedition during autumn 2011.The comparison shows that the retrieved SSS values using ascending pass data have much better agreement with in situ measurements than the result derived from descending pass data.Accuracy in terms of bias and root mean square error(RMS) of the SSS retrieved using three different sea surface roughness models is very consistent,regardless of ascending or descending orbits.When ascending and descending measurements are combined for comparison,the retrieved SSS using a semi-empirical model shows the best agreement with in situ measurements,with bias-0.33 practical salinity units and RMS 0.74.We also investigated the impact of environmental conditions of sea surface wind and sea surface temperature on accuracy of the retrieved SSS.The SCS is a semi-closed basin where radio frequencies transmitted from the mainland strongly interfere with SMOS measurements.Therefore,accuracy of retrieved SSS shows a relationship with distance between the validation sites and land.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-01)the National High Technology Research and Development Program of China (863 Program) (No.2008AA09Z112)+4 种基金the National Basic Research Program of China (973 Program) (No.2010CB951200)the National Natural Sciences Foundation of China (No.40876092)the Program of Guangdong Provincial Science & Technology (No.2008B030303026)the Natural Sciences Foundation of Guangdong Province (No.8351030101000002)the Project of Knowledge Innovation of the South China Sea Institute of Oceanology (No.LYQY200701)
文摘Internal waves can bring nutrients to the upper level of water bodies and facilitate phytoplankton photosynthesis.Internal waves occur frequently in the northern portion of the South China Sea and inflict an important effect on chlorophyll a distribution.In this study,in-situ observation and satellite remote sensing data were used to study the effects of internal waves on chlorophyll a distribution.Based on the in-situ observations,lower chlorophyll a concentrations were present in the middle and bottom level in areas in which internal waves occur frequently,while the surface chlorophyll a distribution increased irregularly,and a small area with relatively higher chlorophyll a concentrations was observed in the area around the Dongsha Island.Satellite remote sensing showed that the chlorophyll a concentration increased in the area near Dongsha Island,where internal waves frequently occurred.The results of the increased chlorophyll a concentration in the surface water near Dongsha Island in the northern portion of the South China Sea indicated that internal waves could uplift phytoplankton and facilitate phytoplankton growth.
文摘An intelligent camera for surface defect inspection is presented which can pre-process the surface image of a rolled strip and pick defective areas out at a spead of 1 600 meters per minute. The camera is made up of a high speed line CCD, a 60 Mb/s CCD digitizer with correlated double sampling function, and a field programmable gate array(FPGA), which can quickly distinguish defective areas using a perceptron embedded in FPGA thus the data to be further processed would dramatically be reduced. Some experiments show that the camera can meet high producing speed, and reduce cost and complexity of automation surface inspection systems.
基金the Beijing Municipal Science&Technology Project(Grant No.Z141100003614052)the National Natural Science Foundation of China(Grants No.51525901&51379100)as well as by China Ministry of Science and Technology(Grant No.2011CB409901)
文摘The quantification of the sheltering and exposure effects of non-uniform sediments has been widely achieved through hiding function models. Big challenge exists so far in the model parameter that is highly variable and differs greatly between laboratory flumes and field streams. This paper presents an improved surface-based hiding fimction. The force balance for particle inception was formulated and the allocation of the overall bed shear stress into each group of sediments was mimicked. The new hiding function was examined against and agrees well with the documented field and flume data. It was shown that the hiding fimction is closely related to the relative flow depth and the reference elevation in the velocity profile in addition to the bed material gradation. The power law of velocity profile that applies to both flume flows and natural streams can link the flume and field data together. The hiding function with b = 1/6 and b = 1/2 is applicable to natural streams and laboratory flumes, respectively. The value orb = 0.263 also works well for gravel bed rivers. The range of the reference elevation, namely z0 = 0.4Dm-1.4Dm, is recommended for either the flume or field data. The new hiding function contributes to addressing clearer physical meanings and a useful perspective for further improvement.