Due to corner separation and other complex three-dimensional flows existing in the highly loaded stator, which influences the fan performance significantly, highly loaded stator blades of a transonic fan with a maximu...Due to corner separation and other complex three-dimensional flows existing in the highly loaded stator, which influences the fan performance significantly, highly loaded stator blades of a transonic fan with a maximum camber angle of 57° were studied in this paper and sector cascade experiment was adopted. In order to get the stator aerodynamic parameters as realistic as possible and conduct the experiment without the existence of rotor, an adjustable guide vane was designed to simulate the velocity magnitude and direction of the stator inlet flow. Results show that the adjustable guide vane can simulate the rotor outlet velocity direction and magnitude in most span range. The deviation angle is positive and the maximum value is nearly 21° because the severe separation is at 27% span. Corner separation exists on both pressure side and suction side and the location of separation initiation is determined. Finally, the stator blades were redesigned with some suction slots on the suction side. Experiment results show that the suction slots change the flow field structure, increase the capability of flow turning, and decrease the flow loss.展开更多
基金funded by the National Natural Science Foundation of China (51576024, 51436002)the Program for Liaoning innovative Research Team in University (LT2015004)
文摘Due to corner separation and other complex three-dimensional flows existing in the highly loaded stator, which influences the fan performance significantly, highly loaded stator blades of a transonic fan with a maximum camber angle of 57° were studied in this paper and sector cascade experiment was adopted. In order to get the stator aerodynamic parameters as realistic as possible and conduct the experiment without the existence of rotor, an adjustable guide vane was designed to simulate the velocity magnitude and direction of the stator inlet flow. Results show that the adjustable guide vane can simulate the rotor outlet velocity direction and magnitude in most span range. The deviation angle is positive and the maximum value is nearly 21° because the severe separation is at 27% span. Corner separation exists on both pressure side and suction side and the location of separation initiation is determined. Finally, the stator blades were redesigned with some suction slots on the suction side. Experiment results show that the suction slots change the flow field structure, increase the capability of flow turning, and decrease the flow loss.