An experimental study on intensifying osmotic dehydration was carried out ina state of nature and with acoustic cavitation of different cavitating intensity (0.5A, 0.7A and0.9A) respectively, in which the material is ...An experimental study on intensifying osmotic dehydration was carried out ina state of nature and with acoustic cavitation of different cavitating intensity (0.5A, 0.7A and0.9A) respectively, in which the material is apple slice of 5mm thickness. The result showed thatacoustic cavitation remarkably enhanced the osmotic dehydration, and the water loss was acceleratedwith the increase of cavitating intensity. The water diffusivity coefficients ranged from1.8x10^(-10)m^2·s^(-1) at 0.5A to 2.6x10^(-10)m^2·s^(-1) at 0.9A, and solute diffusivitycoefficients ranged from 3.5x10^(-11) m^2·s^(-1) at 0.5A to 4.6X10^(-11)m^2·s^(-1) at 0.9A. On thebasis of experiments, a mathematical model was established about mass transfer during osmoticdehydration, and the numerical simulation was carried out. The calculated results agree well withexperimental data, and represent the rule of mass transfer during osmotic dehydration intensified byacoustic cavitation.展开更多
This paper describes a general model for the mechanical behavior studying of general wire rope strand. An exact solution of the deformation characteristics was given when the strands is under tensile and torsional loa...This paper describes a general model for the mechanical behavior studying of general wire rope strand. An exact solution of the deformation characteristics was given when the strands is under tensile and torsional loads. The theoretical results are useful in evaluating the extensional and torsional moduli of rigidity for the strands. Finally, a simple design criterion is establised for the nonrotating ropes.展开更多
The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model...The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model is used to interpret the process of drop volume increase or decrease of a planar sessile drop and to shed light on the contact angle hysteresis and its relationship with the solid surface roughness. With this model, the advancing and receding contact angles are conceptually explained in terms of equilibrium contact angle and surface roughness only,without invoking the thermodynamic multiplicity. The model is found to be qualitatively consistent to experimental observations on contact angle hysteresis and it suggests a possible way to approach the hysteresis of three-dimensional sessile drops.展开更多
The endochronic equations proposed by Valanis (1980) were extended to a finite deformation range. Jaumanns rate, Fus rate and Wus rate were incorporated into the endochronic equations to analyze simple shear finite de...The endochronic equations proposed by Valanis (1980) were extended to a finite deformation range. Jaumanns rate, Fus rate and Wus rate were incorporated into the endochronic equations to analyze simple shear finite deformation. Incremental equations and numerical solutions are deduced for three endochronic objective models. The results show that an oscillatory shear stress response to a monotonically increasing shear strain occurs when the Jaumanns rate objective model is employed for endochronic materials. The oscillatory response is dependent on the adopted objective rate. Compared with the Jaumanns rate, the Fus rate and the Wus rate satisfy the restrictions to elastic-plastic constitutive relations and are in agreement with the experimental results.展开更多
Being one of their prominent exploitative characteristics, cutting tools durability depends on the character, intensity and the speed of wearing. Identification of tool wearing is of great significance for the purpose...Being one of their prominent exploitative characteristics, cutting tools durability depends on the character, intensity and the speed of wearing. Identification of tool wearing is of great significance for the purpose of avoiding sooner or later replacement of tools. The parameters of tool wearing can be measured by out-process and in-process-measuring systems. Given the extremely limiting role of the former in modern production lines, development of the latter (the indirect measuring systems) has gained prominence, The basis of indirect measuring systems comprises a set of various signals originating from the units of the system under treatment which stand in certain correlations with the wearing parameters. The paper presents mathematical models of axial force designed on the basis of experimental research in drilling tempered steel by twist drills made of high-speed steel manufactured by powder metallurgy.展开更多
文摘An experimental study on intensifying osmotic dehydration was carried out ina state of nature and with acoustic cavitation of different cavitating intensity (0.5A, 0.7A and0.9A) respectively, in which the material is apple slice of 5mm thickness. The result showed thatacoustic cavitation remarkably enhanced the osmotic dehydration, and the water loss was acceleratedwith the increase of cavitating intensity. The water diffusivity coefficients ranged from1.8x10^(-10)m^2·s^(-1) at 0.5A to 2.6x10^(-10)m^2·s^(-1) at 0.9A, and solute diffusivitycoefficients ranged from 3.5x10^(-11) m^2·s^(-1) at 0.5A to 4.6X10^(-11)m^2·s^(-1) at 0.9A. On thebasis of experiments, a mathematical model was established about mass transfer during osmoticdehydration, and the numerical simulation was carried out. The calculated results agree well withexperimental data, and represent the rule of mass transfer during osmotic dehydration intensified byacoustic cavitation.
文摘This paper describes a general model for the mechanical behavior studying of general wire rope strand. An exact solution of the deformation characteristics was given when the strands is under tensile and torsional loads. The theoretical results are useful in evaluating the extensional and torsional moduli of rigidity for the strands. Finally, a simple design criterion is establised for the nonrotating ropes.
文摘The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model is used to interpret the process of drop volume increase or decrease of a planar sessile drop and to shed light on the contact angle hysteresis and its relationship with the solid surface roughness. With this model, the advancing and receding contact angles are conceptually explained in terms of equilibrium contact angle and surface roughness only,without invoking the thermodynamic multiplicity. The model is found to be qualitatively consistent to experimental observations on contact angle hysteresis and it suggests a possible way to approach the hysteresis of three-dimensional sessile drops.
文摘The endochronic equations proposed by Valanis (1980) were extended to a finite deformation range. Jaumanns rate, Fus rate and Wus rate were incorporated into the endochronic equations to analyze simple shear finite deformation. Incremental equations and numerical solutions are deduced for three endochronic objective models. The results show that an oscillatory shear stress response to a monotonically increasing shear strain occurs when the Jaumanns rate objective model is employed for endochronic materials. The oscillatory response is dependent on the adopted objective rate. Compared with the Jaumanns rate, the Fus rate and the Wus rate satisfy the restrictions to elastic-plastic constitutive relations and are in agreement with the experimental results.
文摘Being one of their prominent exploitative characteristics, cutting tools durability depends on the character, intensity and the speed of wearing. Identification of tool wearing is of great significance for the purpose of avoiding sooner or later replacement of tools. The parameters of tool wearing can be measured by out-process and in-process-measuring systems. Given the extremely limiting role of the former in modern production lines, development of the latter (the indirect measuring systems) has gained prominence, The basis of indirect measuring systems comprises a set of various signals originating from the units of the system under treatment which stand in certain correlations with the wearing parameters. The paper presents mathematical models of axial force designed on the basis of experimental research in drilling tempered steel by twist drills made of high-speed steel manufactured by powder metallurgy.