By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental...By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental results demonstrate the completed phase transformation fromαtoβ-Si3N4 in Si3N4 ceramic samples with a amount of 1.60 wt%Li2CO3(0.65 wt%Li2O)and 0.33 wt%Y2O3 additives.The as-synthesized porous Si3N4 ceramics exhibit high flexural strength((126.7±2.7)MPa)and high open porosity of 50.4%at elevated temperature(1200°C).These results are attributed to the significant role of added Li2CO3 as sintering additive,where the volatilization of intergranular glassy phase occurs during sintering process.Therefore,porous Si3N4 ceramics with desired mechanical property prepared by altering the addition of sintering additives demonstrate their great potential as a promising candidate for high temperature applications.展开更多
ZrO2 was added into CaO-Al2O3-SiO2 glass-ceramics and the effect of ZrO2 on sintering and crystallization of CaO-Al2O3-SiO2 glass ceramics was investigated. The results show that the sintering shrinkage ratio of glass...ZrO2 was added into CaO-Al2O3-SiO2 glass-ceramics and the effect of ZrO2 on sintering and crystallization of CaO-Al2O3-SiO2 glass ceramics was investigated. The results show that the sintering shrinkage ratio of glass particles decreases with the increase of the content of ZrO2. ZrO2 has an unfavourable effect on sintering shrinkage ratio of glass particles. The sintering shrinkage ratio of glass particles increases with the increase of sintering temperature. The increase of sintering temperature favors the decrease of the liquid phase viscosity of glass particles. ZrO2 has little effect on crystallization of main crystalline phase (β-wollastonite). However, it promotes the crystallization at relatively low temperature.展开更多
Low-temperature sintering and properties of LTCC (low temperature co-fired ceramics) materials based on CaO-BaO-Al2O3-B2O3-SiO2 glass and various fillers such as Al2O3, silica glass, christobalite, AlN, ZrO2, MgO-Si...Low-temperature sintering and properties of LTCC (low temperature co-fired ceramics) materials based on CaO-BaO-Al2O3-B2O3-SiO2 glass and various fillers such as Al2O3, silica glass, christobalite, AlN, ZrO2, MgO-SiO2, TiO2 were investigated. The results show that densification, crystallization, microstructures and dielectric properties of the composites are found to strongly depend on the type of filler. The densification process of glass/ceramic composites with various fillers is mainly from 600 ℃ to 925 ℃, and the initial compacting temperature of samples is 600 ℃. The initial rapid densification of samples starts at its glass softening temperature. LTCC compositions containing Al2O3, silica glass, AlN and MgO-SiO2 fillers start to have the crystallization peaks at 890, 903, 869 and 844 ℃, respectively. The crystallization peaks are believed as correlated to the crystallization of CaAl2SiO8, β-SiO2, Ca2Al2SiO7 and β-SiO2. The composite ceramic with Al2O3, silica glass and TiO2 ceramic have a better dense structure and better smooth fracture surface. Sample for Al2O3 has the lowest dielectric loss tanδ value of 0.00091, whereas the sample for MgO.SiO, has the highest dielectric loss tanδ value of 0.02576. The sample for TiO2 has the highest dielectric constant value of 14.46, whereas the sample for AIN has the lowest dielectric constant value of 4.61.展开更多
基金Project(202045007)supported by the Start-up Funds for Outstanding Talents in Central South University,China。
文摘By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental results demonstrate the completed phase transformation fromαtoβ-Si3N4 in Si3N4 ceramic samples with a amount of 1.60 wt%Li2CO3(0.65 wt%Li2O)and 0.33 wt%Y2O3 additives.The as-synthesized porous Si3N4 ceramics exhibit high flexural strength((126.7±2.7)MPa)and high open porosity of 50.4%at elevated temperature(1200°C).These results are attributed to the significant role of added Li2CO3 as sintering additive,where the volatilization of intergranular glassy phase occurs during sintering process.Therefore,porous Si3N4 ceramics with desired mechanical property prepared by altering the addition of sintering additives demonstrate their great potential as a promising candidate for high temperature applications.
文摘ZrO2 was added into CaO-Al2O3-SiO2 glass-ceramics and the effect of ZrO2 on sintering and crystallization of CaO-Al2O3-SiO2 glass ceramics was investigated. The results show that the sintering shrinkage ratio of glass particles decreases with the increase of the content of ZrO2. ZrO2 has an unfavourable effect on sintering shrinkage ratio of glass particles. The sintering shrinkage ratio of glass particles increases with the increase of sintering temperature. The increase of sintering temperature favors the decrease of the liquid phase viscosity of glass particles. ZrO2 has little effect on crystallization of main crystalline phase (β-wollastonite). However, it promotes the crystallization at relatively low temperature.
基金Project supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions ChinaProject(CXZZ12_0415) supported by Innovation Foundation for Graduate Students of Jiangsu Province ChinaProject(IRT1146) supported by Changjiang Scholars and Innovative Research Team in University(PCSIRT),China
文摘Low-temperature sintering and properties of LTCC (low temperature co-fired ceramics) materials based on CaO-BaO-Al2O3-B2O3-SiO2 glass and various fillers such as Al2O3, silica glass, christobalite, AlN, ZrO2, MgO-SiO2, TiO2 were investigated. The results show that densification, crystallization, microstructures and dielectric properties of the composites are found to strongly depend on the type of filler. The densification process of glass/ceramic composites with various fillers is mainly from 600 ℃ to 925 ℃, and the initial compacting temperature of samples is 600 ℃. The initial rapid densification of samples starts at its glass softening temperature. LTCC compositions containing Al2O3, silica glass, AlN and MgO-SiO2 fillers start to have the crystallization peaks at 890, 903, 869 and 844 ℃, respectively. The crystallization peaks are believed as correlated to the crystallization of CaAl2SiO8, β-SiO2, Ca2Al2SiO7 and β-SiO2. The composite ceramic with Al2O3, silica glass and TiO2 ceramic have a better dense structure and better smooth fracture surface. Sample for Al2O3 has the lowest dielectric loss tanδ value of 0.00091, whereas the sample for MgO.SiO, has the highest dielectric loss tanδ value of 0.02576. The sample for TiO2 has the highest dielectric constant value of 14.46, whereas the sample for AIN has the lowest dielectric constant value of 4.61.