A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composit...A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed.展开更多
To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing ...To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing with the test data,systematic numerical analysis on the local buckling behavior of this sandwich pipe is also conducted,and the buckling failure mechanism is revealed.The influences of the key parameters on bearing capacity of the sandwich structure are discussed.Test and numerical results show that the local buckling failure of the GFRPfoam sandwich pipe is dominated basically by two typical modes,i.e.,the conjoint buckling and the layered buckling.Local buckling at the end,shear failure at the end and interface peeling failure are less efficient than the local buckling failure at the middle height,and ought to be restrained by appropriate structural measures.The local buckling bearing capacity increases linearly with the core density of the sandwich pipe structure.When the core density is relatively high(higher than 0.05 g/cm3),the effect of increasing the core density on improving the bearing efficiency is less on the specimens with a large ratio of the wall thickness to the radius than on those with a small one.Local layered buckling is another failure mode with lower bearing efficiency than the local conjoint buckling,and it can be restrained by increasing the core density to ensure the cooperation of the inner and the outer GFRP surface layer.The bearing capacity of the GFRP-foam sandwich pipe increases with the height-diameter ratio;however,the bearing efficiency decreases with this parameter.展开更多
基金Project(SS2015AA031101)supported by the National High-tech R&D Program of China
文摘A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed.
基金supported by the National Key R&D Program of China(No.2017YFC0405103)the Natural Science Foundation of China(No. 51978166)the Construction System Science and Technology Guidance Project of Jiangsu(Nos.2017ZD131,2017ZD132).
文摘To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing with the test data,systematic numerical analysis on the local buckling behavior of this sandwich pipe is also conducted,and the buckling failure mechanism is revealed.The influences of the key parameters on bearing capacity of the sandwich structure are discussed.Test and numerical results show that the local buckling failure of the GFRPfoam sandwich pipe is dominated basically by two typical modes,i.e.,the conjoint buckling and the layered buckling.Local buckling at the end,shear failure at the end and interface peeling failure are less efficient than the local buckling failure at the middle height,and ought to be restrained by appropriate structural measures.The local buckling bearing capacity increases linearly with the core density of the sandwich pipe structure.When the core density is relatively high(higher than 0.05 g/cm3),the effect of increasing the core density on improving the bearing efficiency is less on the specimens with a large ratio of the wall thickness to the radius than on those with a small one.Local layered buckling is another failure mode with lower bearing efficiency than the local conjoint buckling,and it can be restrained by increasing the core density to ensure the cooperation of the inner and the outer GFRP surface layer.The bearing capacity of the GFRP-foam sandwich pipe increases with the height-diameter ratio;however,the bearing efficiency decreases with this parameter.