In order to delay or eliminate the occurrence and expansion of the reflective cracking in the asphalt concrete overlay on old cement concrete pavement, an epoxy asphalt geogrid stress-absorbing layer( EAGSAL) was de...In order to delay or eliminate the occurrence and expansion of the reflective cracking in the asphalt concrete overlay on old cement concrete pavement, an epoxy asphalt geogrid stress-absorbing layer( EAGSAL) was designed. The EAGSAL consists of epoxy asphalt and fiberglass geogrid. The pull-out test, skewshearing test, bending beam test and fatigue test were conducted to evaluate the performance of the EAGSAL and a traditional stress-absorbing layer( TSAL). The results showthat the adhesive performance, shear performance, bending strength and fatigue performance of the EAGSAL with an optimal spraying volume of epoxy asphalt are better than those of optimally designed TSAL, and the maximum bending strain of the EAGSAL is very close to that of the TSAL. The EAGSAL has superior performance in reflective cracking resistance.Moreover, the EAGSAL with the optimal spraying volume of approximately 2. 0 L m^2 is thinner and lighter than the TSAL,which can decrease the thickness and improve the bearing ability of the whole pavement structure.展开更多
Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate dec...Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate decision of materials can cause the product to be reproduced or remanufactured.To avoid this circumstance,one of the useful tools that can be employed in determining the most appropriate material is analytical hierarchy process(AHP).To illustrate the application of AHP,six different types of composite materials were considered.The most appropriate one for suitability of use in manufacturing automotive bumper beam was determined by considering eight main selection factors and 12 sub-factors.The AHP analysis reveals that the glass fibre epoxy is the most appropriate material because it has the highest value(25.7%,mass fraction) compared with other materials.The final material is obtained by performing six different scenarios of the sensitivity analysis.It is proved that glass fibre epoxy is the most optimum decision.展开更多
In the field of highly integrated printed circuit board (PCB), the heat resistant substrate with low water absorption is very important material. To get the resin composition for the high functional substrate materi...In the field of highly integrated printed circuit board (PCB), the heat resistant substrate with low water absorption is very important material. To get the resin composition for the high functional substrate material with low moisture absorption and high glass transition temperature (Tg) simultaneously, a fluorenyl "Cardo" epoxy was incorporated into novolac cyanate ester resin. As an optimum curing agent for the fiuorenyl epoxy, methyl nadic anhydride (MNA) was selected. Silica powders as fillers were added into the resin composition. The partial replacement of the cyanate ester resin with the fluorenyl epoxy could reduce the moisture absorption with keeping high glass transition temperature over 300 ℃. The laminate, which was fabricated from prepregs made with 40 wt% silica-filled resin composition and glass fabric, showed high Tg of 317 ℃ and low moisture absorption of 0.57%.展开更多
The reactive force field was used to study the molecular dynamics of cross-linked EPON 862 (diglycidyl ether of bisphenol-F) and DETDA (diethylene toluene diamine) system in order to predict its thermo-mechanical ...The reactive force field was used to study the molecular dynamics of cross-linked EPON 862 (diglycidyl ether of bisphenol-F) and DETDA (diethylene toluene diamine) system in order to predict its thermo-mechanical behavior under different loading conditions. The approach for building the EPON 862/DETDA structures, cross-linking, and equilibration of the systems, and the evaluation of the models are presented. The mechanical properties such as Young's and shear moduli, Poisson ratio, and yields strength as well as thermal properties such as glass transition temperature and coefficient of thermal expansion are predicted. The results are in close agreement with both experimental data and simulated results in literature.展开更多
基金The National Natural Science Foundation of China(No.51178114,51378122)
文摘In order to delay or eliminate the occurrence and expansion of the reflective cracking in the asphalt concrete overlay on old cement concrete pavement, an epoxy asphalt geogrid stress-absorbing layer( EAGSAL) was designed. The EAGSAL consists of epoxy asphalt and fiberglass geogrid. The pull-out test, skewshearing test, bending beam test and fatigue test were conducted to evaluate the performance of the EAGSAL and a traditional stress-absorbing layer( TSAL). The results showthat the adhesive performance, shear performance, bending strength and fatigue performance of the EAGSAL with an optimal spraying volume of epoxy asphalt are better than those of optimally designed TSAL, and the maximum bending strain of the EAGSAL is very close to that of the TSAL. The EAGSAL has superior performance in reflective cracking resistance.Moreover, the EAGSAL with the optimal spraying volume of approximately 2. 0 L m^2 is thinner and lighter than the TSAL,which can decrease the thickness and improve the bearing ability of the whole pavement structure.
基金the financial support through Research University Grant Scheme 2007 (RUG 2007) with vote number 91045
文摘Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate decision of materials can cause the product to be reproduced or remanufactured.To avoid this circumstance,one of the useful tools that can be employed in determining the most appropriate material is analytical hierarchy process(AHP).To illustrate the application of AHP,six different types of composite materials were considered.The most appropriate one for suitability of use in manufacturing automotive bumper beam was determined by considering eight main selection factors and 12 sub-factors.The AHP analysis reveals that the glass fibre epoxy is the most appropriate material because it has the highest value(25.7%,mass fraction) compared with other materials.The final material is obtained by performing six different scenarios of the sensitivity analysis.It is proved that glass fibre epoxy is the most optimum decision.
文摘In the field of highly integrated printed circuit board (PCB), the heat resistant substrate with low water absorption is very important material. To get the resin composition for the high functional substrate material with low moisture absorption and high glass transition temperature (Tg) simultaneously, a fluorenyl "Cardo" epoxy was incorporated into novolac cyanate ester resin. As an optimum curing agent for the fiuorenyl epoxy, methyl nadic anhydride (MNA) was selected. Silica powders as fillers were added into the resin composition. The partial replacement of the cyanate ester resin with the fluorenyl epoxy could reduce the moisture absorption with keeping high glass transition temperature over 300 ℃. The laminate, which was fabricated from prepregs made with 40 wt% silica-filled resin composition and glass fabric, showed high Tg of 317 ℃ and low moisture absorption of 0.57%.
文摘The reactive force field was used to study the molecular dynamics of cross-linked EPON 862 (diglycidyl ether of bisphenol-F) and DETDA (diethylene toluene diamine) system in order to predict its thermo-mechanical behavior under different loading conditions. The approach for building the EPON 862/DETDA structures, cross-linking, and equilibration of the systems, and the evaluation of the models are presented. The mechanical properties such as Young's and shear moduli, Poisson ratio, and yields strength as well as thermal properties such as glass transition temperature and coefficient of thermal expansion are predicted. The results are in close agreement with both experimental data and simulated results in literature.