This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experi...This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experiment and theory results showed that the mechanical properties of long glass fiber reinforced thermoplastics pellets (LGFRT) have been enhanced better than that of short glass fiber reinforced thermoplastics pellets (SGFRT) manufactured by molding procession. After regulation of the relative humidity by 50 % , the mechanical properties of 30 % ( weight percent) short glass fiber content in SFT ( SFT-PA6-SGF30 ) are similar to that of 40 % long glass fiber content in LFT. Howev- er, the density of the latter is about 17 % lower than that of the former. Thus, the corresponding weight of products is reduced by 13 % ;output rate is increased by 21% , and the cost is therefore significantly lowered. And it has the fol- lowing advantages: impact strength is increased by 87 % ; the proportion is reduced by 20 % ; molding cycle is short- ened by 10 % ;materials cost is saved by 20 % -30 % and the final total cost is saved by 30 % -40 %. So LFT (LFT-PP-LGF40) can replace SFT (SFT-PA6-SGF30) with the similar basic mechanical properties under normal tem- perature or 160 ℃ lower.展开更多
A review on the formation and unique physical and mechanical properties of metallic glassy fibers(MGFs)with the diameter ranging from micro to nano scales fabricated by a supercooled liquid extraction method(SLEM)is g...A review on the formation and unique physical and mechanical properties of metallic glassy fibers(MGFs)with the diameter ranging from micro to nano scales fabricated by a supercooled liquid extraction method(SLEM)is given.The SLEM method,through driving metallic glass rods in their supercooled liquid region via superplasticity,can fabricate MGFs with precisely designed and controlled size and properties,high structural uniformity and surface smoothness and extreme flexibility.The SLEM method is efficient and the MGFs can be continuously prepared by this method.A parameter f based on the thermal and rheological properties of MG-forming alloys is proposed to control the preparation and size of the fibers.We show that the novel MGFs with superior properties may attract intensive scientific interests and propel more engineering and functional applications.展开更多
文摘This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experiment and theory results showed that the mechanical properties of long glass fiber reinforced thermoplastics pellets (LGFRT) have been enhanced better than that of short glass fiber reinforced thermoplastics pellets (SGFRT) manufactured by molding procession. After regulation of the relative humidity by 50 % , the mechanical properties of 30 % ( weight percent) short glass fiber content in SFT ( SFT-PA6-SGF30 ) are similar to that of 40 % long glass fiber content in LFT. Howev- er, the density of the latter is about 17 % lower than that of the former. Thus, the corresponding weight of products is reduced by 13 % ;output rate is increased by 21% , and the cost is therefore significantly lowered. And it has the fol- lowing advantages: impact strength is increased by 87 % ; the proportion is reduced by 20 % ; molding cycle is short- ened by 10 % ;materials cost is saved by 20 % -30 % and the final total cost is saved by 30 % -40 %. So LFT (LFT-PP-LGF40) can replace SFT (SFT-PA6-SGF30) with the similar basic mechanical properties under normal tem- perature or 160 ℃ lower.
基金supported by the National Natural Science Foundation of China(Grant Nos.51271195 and 51171204)the National Basic Research Program of China(Grant No.2010CB731603)
文摘A review on the formation and unique physical and mechanical properties of metallic glassy fibers(MGFs)with the diameter ranging from micro to nano scales fabricated by a supercooled liquid extraction method(SLEM)is given.The SLEM method,through driving metallic glass rods in their supercooled liquid region via superplasticity,can fabricate MGFs with precisely designed and controlled size and properties,high structural uniformity and surface smoothness and extreme flexibility.The SLEM method is efficient and the MGFs can be continuously prepared by this method.A parameter f based on the thermal and rheological properties of MG-forming alloys is proposed to control the preparation and size of the fibers.We show that the novel MGFs with superior properties may attract intensive scientific interests and propel more engineering and functional applications.