期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
不饱和聚酯玻璃纤维模塑料阻燃性的探讨
1
作者 王颖 顾滨 《合成树脂及塑料》 CAS 1992年第2期69-72,共4页
讨论不饱和聚酯玻璃纤维片、团状模塑料的燃烧过程,阻燃机理,阻燃方法,阻燃剂种类及应用。不饱和聚醋玻璃纤维片状模塑料(SMC)、团状模塑料(DMC)以其优异的电气绝缘性、机械强度、阻燃性。
关键词 阻燃 玻璃纤维模 塑料 聚酯
下载PDF
Comparative Life-cycle Assessment of Sheet Molding Compound Reinforced by Natural Fiber vs. Glass Fiber
2
作者 Jinwu Wang Sheldon Qiang Shi Kaiwen Liang 《Journal of Agricultural Science and Technology(B)》 2013年第7期493-502,共10页
We present comparative life-cycle assessments of three fiber-reinforced sheet molding compounds (SMCs) using kenaf fiber, glass fiber and soy protein resin. Sheet molding compounds for automotive applications are ty... We present comparative life-cycle assessments of three fiber-reinforced sheet molding compounds (SMCs) using kenaf fiber, glass fiber and soy protein resin. Sheet molding compounds for automotive applications are typically made of unsaturated polyester and glass fibers. Replacing these with kenaf fiber or soy protein offers potential environmental benefits. A soy-based resin, maleated acrylated epoxidized soy oil (MAESO), was synthesized from refined soybean oil. Kenaf fiber and polyester resins were used to make SMC 1 composites, while SMC2 composites were made from kenaf fiber and a resin blend of 20% MASEO and 80% unsaturated polyester. Both exhibited good physical and mechanical properties, though neither was as strong as glass fiber reinforced polyester SMC. The functional unit was defined as mass to achieve equal stiffness and stability for the manufacture of interior parts for automobiles. The life-cycle assessments were done on SMCI, SMC2 and glass fiber reinforced SMC. The material and energy balances from producing one functional unit of three composites were collected from lab experiments and the literature. Key environmental measures were computed using SimaPro software. Kenaf fiber-reinforced SMC composites (SMC1 and SMC2) performed better than glass fiber-reinforced SMC in every environmental category. The global warming potentials of kenaf fiber-reinforced SMC (SMCI) and kenaf soy resin-based SMC (SMC2) were 45% and 58%, respectively, of glass fiber-reinforced SMC. Thus, we have demonstrated significant ecological benefit from replacing glass fiber reinforced SMC with soy-based resin and natural fiber. 展开更多
关键词 Natural fiber reinforced composites sheet molding compound life-cycle assessment.
下载PDF
Numerical simulation and experimental study on electrothermal properties of carbon/glass fiber hybrid textile reinforced concrete 被引量:8
3
作者 XU ShiLang YU WenTing SONG ShiDe 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第9期2421-2428,共8页
Carbon/glass fiber hybrid textile reinforced concrete is a relatively new composite material with good mechanical capacity and excellent electrical conductivity.Both small-scale slab heating experiments and numerical ... Carbon/glass fiber hybrid textile reinforced concrete is a relatively new composite material with good mechanical capacity and excellent electrical conductivity.Both small-scale slab heating experiments and numerical simulation are presented in this paper.Temperature variation curves obtained during heating indicate the effects of environmental temperature,heat-conducting layer thickness and electric heating power.Comparison of temperature rising between the situations with and without thermal isolation layer is given as well.The results indicate that the textile can form a good conductive heating network and generate enough heat to raise the temperature in the concrete when connected to a power supply,while the resistance of the slab remains stable during the heating.Numerical results are in good accordance with the experiments.Real time snow-melting experiment was conducted to verify the feasibility of deicing.The electrothermal properties of textile can be utilized for deicing and snow melting in a safe,environmentally friendly and efficient way. 展开更多
关键词 carbon/glass fiber hybrid textile reinforced concrete numerical simulation electrothermal properties deicing and snowmelting
原文传递
Structural behaviour of fibre metal laminates subjected to a low velocity impact 被引量:2
4
作者 CANTWELL W J 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第6期1168-1177,共10页
Structural impact tests were first presented to cover typical fibre metal laminates (FMLs) subjected a low velocity projectile impact,which produced the corresponding load-displacement traces and deformation/failure m... Structural impact tests were first presented to cover typical fibre metal laminates (FMLs) subjected a low velocity projectile impact,which produced the corresponding load-displacement traces and deformation/failure modes for the validation of numerical models.Finite element (FE) models were then developed to simulate the impact behaviour of FMLs tested.The aluminium (alloy grade 2024-0) layer was modelled as an isotropic elasto-plastic material up to the on-set of post failure stage,followed by shear failure and tensile failure to simulate its failure mechanisms.The glass fibre laminate (woven glass-fibre reinforced composite) layer was modelled as an orthotropic material up to its on-set of damage,followed by damage initiation and evolution using the Hashin criterion.The damage initiation was controlled by failure tensile and compressive stresses within the lamina plane which were primarily determined by tests.The damage evolution was controlled by tensile/compressive fracture energies combined with both fibre and matrix.The FE models developed for the 2/1,3/2 and 4/3 FMLs plates made with 4-ply and 8-ply glass fibre laminate cores were validated against the corresponding experimental results.Good correlation was obtained in terms of load-displacement traces,deformation and failure modes.The validated models were ready to be used to undertake parametric studies to cover FMLs plates made with various stack sequences and composite cores. 展开更多
关键词 DAMAGE Hashin criterion finite element IMPACT FMLs progressive failure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部