为了获得高性能的玻璃基骨水泥,采用溶胶–凝胶法制备了磷灰石/硅灰石(apatite/wollastonite,AW)生物玻璃,将其作为固相粉末与柠檬酸固化液均匀混合制得了AW玻璃基骨水泥(glass-based bone cement,GBC),探讨了溶胶–凝胶法制备的AW生物...为了获得高性能的玻璃基骨水泥,采用溶胶–凝胶法制备了磷灰石/硅灰石(apatite/wollastonite,AW)生物玻璃,将其作为固相粉末与柠檬酸固化液均匀混合制得了AW玻璃基骨水泥(glass-based bone cement,GBC),探讨了溶胶–凝胶法制备的AW生物玻璃作为GBC固相粉末的可能性。用X射线衍射、红外光谱和强度测试仪对不同温度热处理的AW生物玻璃粉末的晶相转变以及骨水泥在人体模拟体液中浸泡不同时间后的晶相组成和抗压强度进行了研究。结果表明:AW生物玻璃粉末经700℃热处理后形成了硅灰石和羟基磷灰石晶相,且温度越高晶相越完整;以900℃热处理后的AW生物玻璃粉末作为固相所制备的GBC随着浸泡时间的增加,骨水泥固化体中生成了更多量的CaCO3晶体及少量的羟基磷灰石晶体,且此种GBC的抗压强度最大。展开更多
文摘为了获得高性能的玻璃基骨水泥,采用溶胶–凝胶法制备了磷灰石/硅灰石(apatite/wollastonite,AW)生物玻璃,将其作为固相粉末与柠檬酸固化液均匀混合制得了AW玻璃基骨水泥(glass-based bone cement,GBC),探讨了溶胶–凝胶法制备的AW生物玻璃作为GBC固相粉末的可能性。用X射线衍射、红外光谱和强度测试仪对不同温度热处理的AW生物玻璃粉末的晶相转变以及骨水泥在人体模拟体液中浸泡不同时间后的晶相组成和抗压强度进行了研究。结果表明:AW生物玻璃粉末经700℃热处理后形成了硅灰石和羟基磷灰石晶相,且温度越高晶相越完整;以900℃热处理后的AW生物玻璃粉末作为固相所制备的GBC随着浸泡时间的增加,骨水泥固化体中生成了更多量的CaCO3晶体及少量的羟基磷灰石晶体,且此种GBC的抗压强度最大。