We calculate the degree of entanglement for some bipartite entangled states of continuous variables.These states include common two-mode squeezed vacuum state, thermal vacuum state of a free single particle (where the...We calculate the degree of entanglement for some bipartite entangled states of continuous variables.These states include common two-mode squeezed vacuum state, thermal vacuum state of a free single particle (where the fictitious tilde system is regarded as another particle), and the squeezed vacuum state of two coupling harmonic oscillators.The degree of entanglement for these quantum systems are shown clearly by using the technique of integration within an ordered product of operators.展开更多
An effective bosonic Hamiltonian describing the interaction of a mesoscopic Josephson junction with a quantized radiation field is studied. It is shown that when the field is initially in a coherent state and the junc...An effective bosonic Hamiltonian describing the interaction of a mesoscopic Josephson junction with a quantized radiation field is studied. It is shown that when the field is initially in a coherent state and the junction initially in its lowest energy level state, the state of the coupled field-mesoscopic Josephson junction system can evolve to a squeezed state. A detailed analysis about the quantum fluctuation of the coupled system is given.展开更多
Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to non-equilibrium phenomena domain, however the status of the theory of non-...Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to non-equilibrium phenomena domain, however the status of the theory of non-equilibrium phenomena can not be said as firm as well established as the Gibbsian ensemble theory. In this work, we present a framework for the non-equilibrium statistical ensemble formalism based on a subdynamic kinetic equation (SKE) rooted from the Brussels-Austin school and followed by some up-to-date works. The constructed key is to use a similarity transformation between Gibbsian ensembles formalism based on Liouville equation and the subdynamic ensemble formalism based on the SKE. Using this formalism, we study the spin-Boson system, as cases of weak coupling or strongly coupling, and obtain the reduced density operators for the Canonical ensembles easily.展开更多
We compute the superfluid density of a two-dimensional boson system with weak two-body repulsive interactions at zero temperature using one-loop perturbation theory in the weak coupling region. The boson fields are ta...We compute the superfluid density of a two-dimensional boson system with weak two-body repulsive interactions at zero temperature using one-loop perturbation theory in the weak coupling region. The boson fields are taken to be in continuum form in real space, and the interactions are approximated by a δ function of the distance between the bosons. We find that the one-loop fluctuations slightly decrease the superfluid density of a classical level. The superfluid density is approximated by the condensate density multiplied by the mass of the boson particle.展开更多
We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equiv...We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation.展开更多
The Majorana representation, which represents a quantum state by stars on the Bloch sphere, provides us an intuitive tool to study the quantum evolution in high dimensional Hilbert space. In this work, we investigate ...The Majorana representation, which represents a quantum state by stars on the Bloch sphere, provides us an intuitive tool to study the quantum evolution in high dimensional Hilbert space. In this work, we investigate the second quantized model and the mean-field model for the interacting-boson system in the Majorana representation. It is shown that the motions of states in the two models are same in the linear case. Furthermore, the contribution of the nonlinear interaction to the star motions in the second quantized model can be expressed by a single star part which is equal to the nonlinear part of the equation for the star in mean-field model under large boson number limit and an extra part caused by the correlation between stars. These differences and relations can not only be reflected by the population differences between the two boson modes in the two models, but also lie with the differences between the continuous changes of the second quantized evolution with the nonlinear interacting strength and the critical behavior of the mean-field evolution which related to the self-trapping effect. The reason of the difference between the two models is also discussed by an effective Hamiltonian.展开更多
The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderate...The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime.The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≤ L ≤ 4N to obtain the ground and low-lying eigenstates.Our numerical results show that breathing modes with N-body eigenenergy spacing of 2hω⊥,known to exist in strictly 2D system with zero-range(δ-function) interaction potential,may as well exist in quasi-2D system with finite-range Gaussian interaction potential.To gain an insight into the many-body states,the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates.In the rapidly rotating regime the ground state in angular momentum subspaces L=(q/2)N(N-1) with q=2,4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose–Laughlin like state.We further observe that the first breathing mode exhibits features similar to the Bose–Laughlin state in having eigenenergy,von Neumann entropy and internal structure independent of interaction for the three-boson system considered here.On the contrary,for eigenstates lying between the Bose–Laughlin like ground state and the first breathing mode,values of eigenenergy,von Neumann entropy and internal structure are found to vary with interaction.展开更多
We investigate the dynamics of the precision of the parameter estimation in many driven atoms, each of which interacts with a local structured bosonic reservoir respectively. The evolution of quantum states for single...We investigate the dynamics of the precision of the parameter estimation in many driven atoms, each of which interacts with a local structured bosonic reservoir respectively. The evolution of quantum states for single driven atom is described by the time local quantum master equation. The dynamics of the quantum Fisher information for many entangled atoms is obtained by means of the supreoperator mapping. The estimation limit is superior to the standard quantum limit during a characteristic interval. At a given time, the precision of parameter estimation can be improved to a maximal value if the number of entangled atoms is chosen to be an optimal value. The optimal number of entangled atoms is determined by the dynamical property. The decay of quantum Fisher information is accelerated with the increase of the number of entangled atoms.展开更多
Spontaneous symmetry breaking is related to the appearance of emergent phenomena, while a non-vanishing order parameter has been viewed as the sign of turning into such symmetry-breaking phase. We study the spontaneou...Spontaneous symmetry breaking is related to the appearance of emergent phenomena, while a non-vanishing order parameter has been viewed as the sign of turning into such symmetry-breaking phase. We study the spontaneous symmetry breaking in the conventional superconductor and Bose–Einstein condensation with a continuous measure of symmetry by showing that both the many-body systems can be mapped into the many spin model. We also formulate the underlying relation between the spontaneous symmetry breaking and the order parameter quantitatively. The degree of symmetry stays unity in the absence of the two emergent phenomena, while decreases exponentially at the appearance of the order parameter which indicates the inextricable relation between the spontaneous symmetry and the order parameter.展开更多
The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerieally. In our findings, when the system is with only repuls...The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerieally. In our findings, when the system is with only repulsive twobody interactions or only three-body interactions, the tunneling will be suppressed; while in the case of the coupling between two- and three-body interactions, the tunneling can be either suppressed or enhanced. Particularly, when attractive three-body interactions are twice large as repulsive two-body interactions, CDT occurs at isolated points of driving force, which is similar to the linear case. Considering different interaction, the system can experience different transformation from coherent tunneling to coherent destruction of tunneling (CDT). The quasi-energy of the system as the function of the periodicaJ1y driving force shows a triangular structure, which provides a deep insight into the tunneling dynamics of the system.展开更多
The higher-order interactions of Bose-Einstein condensate in multi-dimensional optical lattices are discussed both analytically and numerically.It is demonstrated that the effects of the higher-order atomic interactio...The higher-order interactions of Bose-Einstein condensate in multi-dimensional optical lattices are discussed both analytically and numerically.It is demonstrated that the effects of the higher-order atomic interactions on the sound speed and the stabilities of Bloch waves strongly depend on the lattice strength.In the presence of higher-order effects,tighter and high-dimensional lattices are confirmed to be two positive factors for maintaining the system's energetic stability,and the dynamical instability of Bloch waves can take place simultaneously with the energetic instability.In addition,we find that the higher-order interactions exhibit a long-range behavior and the long-lived coherent Bloch oscillations in a tilted optical lattice exist.Our results provide an effective way to probe the higher-order interactions in optical lattices.展开更多
文摘We calculate the degree of entanglement for some bipartite entangled states of continuous variables.These states include common two-mode squeezed vacuum state, thermal vacuum state of a free single particle (where the fictitious tilde system is regarded as another particle), and the squeezed vacuum state of two coupling harmonic oscillators.The degree of entanglement for these quantum systems are shown clearly by using the technique of integration within an ordered product of operators.
文摘An effective bosonic Hamiltonian describing the interaction of a mesoscopic Josephson junction with a quantized radiation field is studied. It is shown that when the field is initially in a coherent state and the junction initially in its lowest energy level state, the state of the coupled field-mesoscopic Josephson junction system can evolve to a squeezed state. A detailed analysis about the quantum fluctuation of the coupled system is given.
基金Supported by the National Natural Science Foundation of China under Grant No. 60874087the Grants from Wuhan University of Technology,in Canada by NSERC, MITACS, CIPI, MMO, and CITO
文摘Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to non-equilibrium phenomena domain, however the status of the theory of non-equilibrium phenomena can not be said as firm as well established as the Gibbsian ensemble theory. In this work, we present a framework for the non-equilibrium statistical ensemble formalism based on a subdynamic kinetic equation (SKE) rooted from the Brussels-Austin school and followed by some up-to-date works. The constructed key is to use a similarity transformation between Gibbsian ensembles formalism based on Liouville equation and the subdynamic ensemble formalism based on the SKE. Using this formalism, we study the spin-Boson system, as cases of weak coupling or strongly coupling, and obtain the reduced density operators for the Canonical ensembles easily.
文摘We compute the superfluid density of a two-dimensional boson system with weak two-body repulsive interactions at zero temperature using one-loop perturbation theory in the weak coupling region. The boson fields are taken to be in continuum form in real space, and the interactions are approximated by a δ function of the distance between the bosons. We find that the one-loop fluctuations slightly decrease the superfluid density of a classical level. The superfluid density is approximated by the condensate density multiplied by the mass of the boson particle.
文摘We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11405008,11175044the Plan for Scientific and Technological Development of Jilin Province under Grant No.20160520173JH
文摘The Majorana representation, which represents a quantum state by stars on the Bloch sphere, provides us an intuitive tool to study the quantum evolution in high dimensional Hilbert space. In this work, we investigate the second quantized model and the mean-field model for the interacting-boson system in the Majorana representation. It is shown that the motions of states in the two models are same in the linear case. Furthermore, the contribution of the nonlinear interaction to the star motions in the second quantized model can be expressed by a single star part which is equal to the nonlinear part of the equation for the star in mean-field model under large boson number limit and an extra part caused by the correlation between stars. These differences and relations can not only be reflected by the population differences between the two boson modes in the two models, but also lie with the differences between the continuous changes of the second quantized evolution with the nonlinear interacting strength and the critical behavior of the mean-field evolution which related to the self-trapping effect. The reason of the difference between the two models is also discussed by an effective Hamiltonian.
文摘The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime.The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≤ L ≤ 4N to obtain the ground and low-lying eigenstates.Our numerical results show that breathing modes with N-body eigenenergy spacing of 2hω⊥,known to exist in strictly 2D system with zero-range(δ-function) interaction potential,may as well exist in quasi-2D system with finite-range Gaussian interaction potential.To gain an insight into the many-body states,the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates.In the rapidly rotating regime the ground state in angular momentum subspaces L=(q/2)N(N-1) with q=2,4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose–Laughlin like state.We further observe that the first breathing mode exhibits features similar to the Bose–Laughlin state in having eigenenergy,von Neumann entropy and internal structure independent of interaction for the three-boson system considered here.On the contrary,for eigenstates lying between the Bose–Laughlin like ground state and the first breathing mode,values of eigenenergy,von Neumann entropy and internal structure are found to vary with interaction.
基金Supported by the National Natural Science Foundation of China under Grant No.11274054the Creative Project of Graduate in University of Suzhou Science and Technology in No.SKCX16-006the Innovation Project of Graduate Education of Jiangsu Province No.JGLX15-150
文摘We investigate the dynamics of the precision of the parameter estimation in many driven atoms, each of which interacts with a local structured bosonic reservoir respectively. The evolution of quantum states for single driven atom is described by the time local quantum master equation. The dynamics of the quantum Fisher information for many entangled atoms is obtained by means of the supreoperator mapping. The estimation limit is superior to the standard quantum limit during a characteristic interval. At a given time, the precision of parameter estimation can be improved to a maximal value if the number of entangled atoms is chosen to be an optimal value. The optimal number of entangled atoms is determined by the dynamical property. The decay of quantum Fisher information is accelerated with the increase of the number of entangled atoms.
基金Supported by the National 973 Program under Grant No.2014CB921403the National Key Research and Development Program under Grant No.2016YFA0301201the National Natural Science Foundation of China under Grant Nos.11421063 and 11534002
文摘Spontaneous symmetry breaking is related to the appearance of emergent phenomena, while a non-vanishing order parameter has been viewed as the sign of turning into such symmetry-breaking phase. We study the spontaneous symmetry breaking in the conventional superconductor and Bose–Einstein condensation with a continuous measure of symmetry by showing that both the many-body systems can be mapped into the many spin model. We also formulate the underlying relation between the spontaneous symmetry breaking and the order parameter quantitatively. The degree of symmetry stays unity in the absence of the two emergent phenomena, while decreases exponentially at the appearance of the order parameter which indicates the inextricable relation between the spontaneous symmetry and the order parameter.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274255 and 11305132Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20136203110001+1 种基金the Natural Science Foundation of Gansu Province under Grant No.2011GS04358Creation of Science and Technology of Northwest Normal University under Grant Nos.NWNUKJCXGC-03-48,NWNU-LKQN-12-12
文摘The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerieally. In our findings, when the system is with only repulsive twobody interactions or only three-body interactions, the tunneling will be suppressed; while in the case of the coupling between two- and three-body interactions, the tunneling can be either suppressed or enhanced. Particularly, when attractive three-body interactions are twice large as repulsive two-body interactions, CDT occurs at isolated points of driving force, which is similar to the linear case. Considering different interaction, the system can experience different transformation from coherent tunneling to coherent destruction of tunneling (CDT). The quasi-energy of the system as the function of the periodicaJ1y driving force shows a triangular structure, which provides a deep insight into the tunneling dynamics of the system.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10975114,10774120the Natural Science Foundation of Gansu Province under Grant No. 1010RJZA012Creation of Science and Technology of Northwest Normal University under Grant No. NWNU-KJCXGC-03-48
文摘The higher-order interactions of Bose-Einstein condensate in multi-dimensional optical lattices are discussed both analytically and numerically.It is demonstrated that the effects of the higher-order atomic interactions on the sound speed and the stabilities of Bloch waves strongly depend on the lattice strength.In the presence of higher-order effects,tighter and high-dimensional lattices are confirmed to be two positive factors for maintaining the system's energetic stability,and the dynamical instability of Bloch waves can take place simultaneously with the energetic instability.In addition,we find that the higher-order interactions exhibit a long-range behavior and the long-lived coherent Bloch oscillations in a tilted optical lattice exist.Our results provide an effective way to probe the higher-order interactions in optical lattices.