We investigate localized atomic matter waves in the two-photon microwave field. Interestingly, the oscillations two-component Bose-Einstein condensates coupled by of localized atomic matter waves will gradually decay ...We investigate localized atomic matter waves in the two-photon microwave field. Interestingly, the oscillations two-component Bose-Einstein condensates coupled by of localized atomic matter waves will gradually decay and finally become non-oscillating behavior even if existing coupling field. In particular, atom numbers occupied in two different hyperfine spin states will appear asymmetric occupations after some time evolution.展开更多
We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We inves...We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons,bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential,periodically modulated harmonic trap potential,and kinklike modulated harmonic trap potential.Through the Feshbach resonance,these dynamics can be realized in experiments by suitable control of time-dependent trap parameters,atomic interactions,and interaction with thermal cloud.展开更多
Bosonic modes have wide applications in various quantum technologies,such as optical photons for quantum communication,magnons in spin ensembles for quantum information storage and mechanical modes for reversible micr...Bosonic modes have wide applications in various quantum technologies,such as optical photons for quantum communication,magnons in spin ensembles for quantum information storage and mechanical modes for reversible microwave-to-optical quantum transduction.There is emerging interest in utilizing bosonic modes for quantum information processing,with circuit quantum electrodynamics(circuit QED)as one of the leading architectures.Quantum information can be encoded into subspaces of a bosonic superconducting cavity mode with long coherence time.However,standard Gaussian operations(e.g.,beam splitting and two-mode squeezing)are insufficient for universal quantum computing.The major challenge is to introduce additional nonlinear control beyond Gaussian operations without adding significant bosonic loss or decoherence.Here we review recent advances in universal control of a single bosonic code with superconducting circuits,including unitary control,quantum feedback control,drivendissipative control and holonomic dissipative control.Various approaches to entangling different bosonic modes are also discussed.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos.90403034,90406017,and 60525417the State Key Basic Research Program of China under Nos.2005CB724508 and 2006CB921400
文摘We investigate localized atomic matter waves in the two-photon microwave field. Interestingly, the oscillations two-component Bose-Einstein condensates coupled by of localized atomic matter waves will gradually decay and finally become non-oscillating behavior even if existing coupling field. In particular, atom numbers occupied in two different hyperfine spin states will appear asymmetric occupations after some time evolution.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11041003 and 60802087the Natural Science Foundation of Jiangsu Province under Grant No.BK2004119
文摘We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons,bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential,periodically modulated harmonic trap potential,and kinklike modulated harmonic trap potential.Through the Feshbach resonance,these dynamics can be realized in experiments by suitable control of time-dependent trap parameters,atomic interactions,and interaction with thermal cloud.
基金support from the ARO (W911NF-18-1-0020 and W911NF-18-1-0212)ARO MURI (W911NF-16-1-0349)+3 种基金AFOSR MURI (FA9550-19-1-0399)NSF (EFMA-1640959, OMA-1936118, EEC-1941583)NTT Research, the Packard Foundation (201339273)the Startup Foundation of Institute of Semiconductors, Chinese Academy of Sciences (E0SEBB11)。
文摘Bosonic modes have wide applications in various quantum technologies,such as optical photons for quantum communication,magnons in spin ensembles for quantum information storage and mechanical modes for reversible microwave-to-optical quantum transduction.There is emerging interest in utilizing bosonic modes for quantum information processing,with circuit quantum electrodynamics(circuit QED)as one of the leading architectures.Quantum information can be encoded into subspaces of a bosonic superconducting cavity mode with long coherence time.However,standard Gaussian operations(e.g.,beam splitting and two-mode squeezing)are insufficient for universal quantum computing.The major challenge is to introduce additional nonlinear control beyond Gaussian operations without adding significant bosonic loss or decoherence.Here we review recent advances in universal control of a single bosonic code with superconducting circuits,including unitary control,quantum feedback control,drivendissipative control and holonomic dissipative control.Various approaches to entangling different bosonic modes are also discussed.