Nanoparticles monolayer formation by spin coating is considered to be a simple, fast and inexpensive nanopatteming technique However, the parameters that govern the overall growth process in this technique are not com...Nanoparticles monolayer formation by spin coating is considered to be a simple, fast and inexpensive nanopatteming technique However, the parameters that govern the overall growth process in this technique are not completely quantified and techniques for the controlled and continuous growth of close packed monolayer particle arrays without defects need to be developed. In this paper, an ordered particle array formation process is analyzed theoretically, employing material flux balance and parti- cle-subjected forces balance, based on the film thickness model of spin coating and evaporation rate law. A series of experi- ments were conducted using silica particle suspensions with various particle volume fractions and different spin speeds. The results show that the spin speed should match the particle volume fraction to meet the requirements of material flux and particles movement in order to obtain a close packed monolayer film. The formation mechanism of fabrication defects involving particle agglomeration and uncontrollable voids were analyzed qualitatively based on crystal growth theory, and validation experiments were performed. The formation of highly uniform close-packed monolayer films was demonstrated and the condi- tion requirements for achieving monolayer nanoparticles array with good quality presented.展开更多
Similarity solution for a spherical shock wave with or without gravitational field in a dusty gas is studied under the action of monochromatic radiation. It is supposed that dusty gas be a mixture of perfect gas and m...Similarity solution for a spherical shock wave with or without gravitational field in a dusty gas is studied under the action of monochromatic radiation. It is supposed that dusty gas be a mixture of perfect gas and micro solid particles. Equilibrium flow condition is supposed to be maintained and energy is varying which is continuously supplied by inner expanding surface. It is found that similarity solution exists under the constant initial density. The comparison between the solutions obtained in gravitating and non-gravitating medium is done. It is found that the shock strength increases with an increase in gravitational parameter or ratio of the density of solid particles to the initial density of the gas, whereas an increase in the radiation parameter has decaying effect on the shock waves.展开更多
The nonlinear aspects of nonplanar dust acoustic (DA) solitary waves are investigated in an unmagnetized complex plasma comprising of cold dust grains,kappa-distributed ions as well as electrons.The nonplanar DA solit...The nonlinear aspects of nonplanar dust acoustic (DA) solitary waves are investigated in an unmagnetized complex plasma comprising of cold dust grains,kappa-distributed ions as well as electrons.The nonplanar DA solitons are studied based on the reductive perturbation technique.It is shown that the evolution of DA solitons is governed by a spherical Kadomtsev-Petviashvili (sKP) equation and then the impact of suprathermality on the spatial structure as well as the nature of DA soliton is studied.It seems that the properties of DA solitons in nonplanar geometry are quite different from that of the planar solitons.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51375381,51575427 and 51675422)the 2015 Overall Planning Innovation Project Foundation of Shaanxi Province(Grant No.2015KTCQ01-36)
文摘Nanoparticles monolayer formation by spin coating is considered to be a simple, fast and inexpensive nanopatteming technique However, the parameters that govern the overall growth process in this technique are not completely quantified and techniques for the controlled and continuous growth of close packed monolayer particle arrays without defects need to be developed. In this paper, an ordered particle array formation process is analyzed theoretically, employing material flux balance and parti- cle-subjected forces balance, based on the film thickness model of spin coating and evaporation rate law. A series of experi- ments were conducted using silica particle suspensions with various particle volume fractions and different spin speeds. The results show that the spin speed should match the particle volume fraction to meet the requirements of material flux and particles movement in order to obtain a close packed monolayer film. The formation mechanism of fabrication defects involving particle agglomeration and uncontrollable voids were analyzed qualitatively based on crystal growth theory, and validation experiments were performed. The formation of highly uniform close-packed monolayer films was demonstrated and the condi- tion requirements for achieving monolayer nanoparticles array with good quality presented.
文摘Similarity solution for a spherical shock wave with or without gravitational field in a dusty gas is studied under the action of monochromatic radiation. It is supposed that dusty gas be a mixture of perfect gas and micro solid particles. Equilibrium flow condition is supposed to be maintained and energy is varying which is continuously supplied by inner expanding surface. It is found that similarity solution exists under the constant initial density. The comparison between the solutions obtained in gravitating and non-gravitating medium is done. It is found that the shock strength increases with an increase in gravitational parameter or ratio of the density of solid particles to the initial density of the gas, whereas an increase in the radiation parameter has decaying effect on the shock waves.
文摘The nonlinear aspects of nonplanar dust acoustic (DA) solitary waves are investigated in an unmagnetized complex plasma comprising of cold dust grains,kappa-distributed ions as well as electrons.The nonplanar DA solitons are studied based on the reductive perturbation technique.It is shown that the evolution of DA solitons is governed by a spherical Kadomtsev-Petviashvili (sKP) equation and then the impact of suprathermality on the spatial structure as well as the nature of DA soliton is studied.It seems that the properties of DA solitons in nonplanar geometry are quite different from that of the planar solitons.