On the basis of gravity field model (EIGEN_CG01C), together with multi-altimeter data, the improved deflection of the vertical gridded in 2'×2' in China marginal sea and gridded in 5'×5' in the global ...On the basis of gravity field model (EIGEN_CG01C), together with multi-altimeter data, the improved deflection of the vertical gridded in 2'×2' in China marginal sea and gridded in 5'×5' in the global sea was determined by using the weighted method of along-track least squares, and the accuracy is better than 1.2^# in China marginal sea. As for the quality of the deflection of the vertical, it meets the challenge for the gravity field of high resolution and accuracy, it shows that, compared with the shipboard gravimetry in the sea, the accuracy of the gravity anomalies computed with the marine deflection of the vertical by inverse Vening-Meinesz formula is 7.75 m.s ^-2.展开更多
基金Supported by the National Nature Science Foundation of China(No. 40474030, 40674013).Acknowledgements Thanks to professor Hwang at the Department of Civil Engineering, National Chiao Tung University for altimeter data.
文摘On the basis of gravity field model (EIGEN_CG01C), together with multi-altimeter data, the improved deflection of the vertical gridded in 2'×2' in China marginal sea and gridded in 5'×5' in the global sea was determined by using the weighted method of along-track least squares, and the accuracy is better than 1.2^# in China marginal sea. As for the quality of the deflection of the vertical, it meets the challenge for the gravity field of high resolution and accuracy, it shows that, compared with the shipboard gravimetry in the sea, the accuracy of the gravity anomalies computed with the marine deflection of the vertical by inverse Vening-Meinesz formula is 7.75 m.s ^-2.