期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
球胶体颗粒之间相互作用能的求解 被引量:2
1
作者 陈崇钧 陈晓东 +2 位作者 罗根祥 金军 王好平 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2001年第6期995-997,共3页
根据线性迭加近似方法 ,定义了一个修正电位项 ,较详细地推导出用于中等电位条件下球形胶体颗粒相互作用能和力的公式 ,该公式较为简单、实用 ,然而 ,对其所做的改进主要是针对相互作用能而不是力 。
关键词 线性迭加 相互作用能 球形胶体颗粒 表面有效电位
下载PDF
球型胶体颗粒的表面电位和表面电荷密度的关系 被引量:2
2
作者 王好平 罗根祥 +2 位作者 刘春生 侯创业 金军 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2005年第4期754-756,共3页
The electrical potential distribution for a charged surface in an electrolyte solution at equilibrium is described by the Poisson-Boltzmann equation. For spherical particle, it is (d2y)/(dX2)+2/X(dy)/(dX) =sin... The electrical potential distribution for a charged surface in an electrolyte solution at equilibrium is described by the Poisson-Boltzmann equation. For spherical particle, it is (d2y)/(dX2)+2/X(dy)/(dX) =sinhy, where y is a normalized electrostatic potential, defined as y=eψ/(kT), and ψ is the electrostatic potential. X is a normalized distance from the sphere center with radius a. X=ka+kx=ka+ξ. In this paper a flat-plate approximation method is proposed for the resolution of the PB equation. By using the extended Langmuir′s method, PB equation is changed to (d2y)/(dζ2)=1/2ey-2/(ka)ey-1. Performing the integration we obtain the relationship between the surface charge density and surface potential for a spherical colloidal particle with a high surface potential. I=-(dy/dζ)<sup>ζ=0 =ey0/2 +{4/(ka)}. Thus the surface excess of co-ions and the double-layer free energy are easily derived. The success of the flat-plate approximation depends so strongly on the value of surface potential y0 and the radius of curvature of the spherical particle. When the surface potential increases even if the radius of curvature is relatively small, the flat-plate approximation is also satisfactory approximations for the sphere. It explains why the present expressions are applicable to spherical particles with a high surface potential. These expressions are shown to be satisfactory approximations to exact numerical values. 展开更多
关键词 球形胶体颗粒 双电层 表面电荷与表面电位关系
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部