We present dynamic mode decomposition (DMD) for studying the hairpin vortices generated by hemisphere protuberance measured by two-dimensional (2D) time-resolved (TR) particle image velocimetry (PIV) in a water channe...We present dynamic mode decomposition (DMD) for studying the hairpin vortices generated by hemisphere protuberance measured by two-dimensional (2D) time-resolved (TR) particle image velocimetry (PIV) in a water channel. The hairpins dynamic information is extracted by identifying their dominant frequencies and associated spatial structures. For this quasi-periodic data system, the resulting main Dynamic modes illustrate the different spatial structures associated with the wake vortex region and the near-wall region. By comparisons with proper orthogonal decomposition (POD), it can be concluded that the dynamic mode concentrates on a certain frequency component more effectively than the mode determined by POD. During the analysis, DMD has proven itself a robust and reliable algorithm to extract spatial-temporal coherent structures.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832001 and 10872145)the State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences
文摘We present dynamic mode decomposition (DMD) for studying the hairpin vortices generated by hemisphere protuberance measured by two-dimensional (2D) time-resolved (TR) particle image velocimetry (PIV) in a water channel. The hairpins dynamic information is extracted by identifying their dominant frequencies and associated spatial structures. For this quasi-periodic data system, the resulting main Dynamic modes illustrate the different spatial structures associated with the wake vortex region and the near-wall region. By comparisons with proper orthogonal decomposition (POD), it can be concluded that the dynamic mode concentrates on a certain frequency component more effectively than the mode determined by POD. During the analysis, DMD has proven itself a robust and reliable algorithm to extract spatial-temporal coherent structures.