Nine new triterpenoid saponins were isolated from the bulbs of Bolbostemma paniculatum (Maxim.) Franquet (Cucurbitaceae): 7beta,18,20,26-tetrahydroxy-(20S)-dammar-24 E-en-3-O-alpha-L-(3-acetyl)arabinopyranosyl-(1-->...Nine new triterpenoid saponins were isolated from the bulbs of Bolbostemma paniculatum (Maxim.) Franquet (Cucurbitaceae): 7beta,18,20,26-tetrahydroxy-(20S)-dammar-24 E-en-3-O-alpha-L-(3-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,18,20,26-tetrahydroxy-(20S)-dammar-24E-en-3-O-alpha-L-(4-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,18,20,26-tetrahydroxy-(20S)-dammar-24E-en-3-O-alpha-L-arabinopyranosyl-(1-->2)-beta-D-(6-acetyl)glucopyranoside, 7beta,20,26-trihydroxy-(20S)-dammar-24E-en-3-O-alpha-L-arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,20,26-trihydroxy-(20S)-dammar-24E-en-3-O-alpha-L-(3-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,20,26-trihydroxy-(20S)-dammar-24E-en-3-O-alpha-L-(4-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,20,26-trihydroxy-8-formyl-(20S)-dammar-24E-en-3-O-alpha-L-(3-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,20,26-trihydroxy-8-formyl-(20S)-dammar-24E-en-3- O-alpha-L-(4-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside and 6’-O-palmitoyltubeimoside Ⅰ. In addition, four known triterpenoid saponins: tubeimoside Ⅰ, tubeimoside Ⅱ, tubeimoside Ⅲ and tubeimoside Ⅳ were isolated. The structures of the above compounds were elucidated based on spectroscopic studies, and the configuration of C-20 of tubeimoside Ⅳ was revised as S rather than R as reported in previous literature. The compounds were tested for their antiviral activity.展开更多
Among orchids, Cymbidiums have got a very high demand in both cut flower and pot plant trade. In the present study the effect of some polysaccharides such as chitosan and NAG (n-acetyl-glucosamine) on organogenesis ...Among orchids, Cymbidiums have got a very high demand in both cut flower and pot plant trade. In the present study the effect of some polysaccharides such as chitosan and NAG (n-acetyl-glucosamine) on organogenesis in protocorm-like-bodies (PLBs) of C. insigne was studied. Synthetic phytohormones such as BA and TDZ (cytokinins) and NAA (auxin) were used for comparison. PLBs of C. insigne were explanted on modified Murashige and Skoog medium supplemented with the single addition of chitosan and NAG, and the combination of BA (benzyladenine) and NAA (1-naphthaleneacetic acid) also with the combination of NAA and TDZ (thidiazuron) among different concentrations. Combination treatments of auxin and cytokinins, the highest percentage of PLBs formation was 73% and shoot formation was 67% when cultured on the medium supplemented with 1.0 mg L1 BA without NAA. Combination treatment of NAA and TDZ, the PLBs formation was 90% and shoot formation was 60% obtained from medium supplemented with 1.0 mg Lt of NAA + 0.1 mg L^-1 TDZ. Single addition of chitosan and NAG with modified MS medium was more effective for new PLBs and shoot formation. The highest percentage of PLBs formation was 87% and shoot formation was 80% obtained from the medium supplemented with 0.1 mg L^-1 chitosan. On the other hand, the PLBs formation rate reached 93% and shoot formation rate was 87% obtained from the medium supplemented with 0.01 mg L^-1 NAG. Application of polysaccharides to in vitro orchid PLBs allows developing new PLBs and shoot to form plantlet without synthetic phytohormones.展开更多
文摘Nine new triterpenoid saponins were isolated from the bulbs of Bolbostemma paniculatum (Maxim.) Franquet (Cucurbitaceae): 7beta,18,20,26-tetrahydroxy-(20S)-dammar-24 E-en-3-O-alpha-L-(3-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,18,20,26-tetrahydroxy-(20S)-dammar-24E-en-3-O-alpha-L-(4-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,18,20,26-tetrahydroxy-(20S)-dammar-24E-en-3-O-alpha-L-arabinopyranosyl-(1-->2)-beta-D-(6-acetyl)glucopyranoside, 7beta,20,26-trihydroxy-(20S)-dammar-24E-en-3-O-alpha-L-arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,20,26-trihydroxy-(20S)-dammar-24E-en-3-O-alpha-L-(3-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,20,26-trihydroxy-(20S)-dammar-24E-en-3-O-alpha-L-(4-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,20,26-trihydroxy-8-formyl-(20S)-dammar-24E-en-3-O-alpha-L-(3-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside, 7beta,20,26-trihydroxy-8-formyl-(20S)-dammar-24E-en-3- O-alpha-L-(4-acetyl)arabinopyranosyl-(1-->2)-beta-D-glucopyranoside and 6’-O-palmitoyltubeimoside Ⅰ. In addition, four known triterpenoid saponins: tubeimoside Ⅰ, tubeimoside Ⅱ, tubeimoside Ⅲ and tubeimoside Ⅳ were isolated. The structures of the above compounds were elucidated based on spectroscopic studies, and the configuration of C-20 of tubeimoside Ⅳ was revised as S rather than R as reported in previous literature. The compounds were tested for their antiviral activity.
文摘Among orchids, Cymbidiums have got a very high demand in both cut flower and pot plant trade. In the present study the effect of some polysaccharides such as chitosan and NAG (n-acetyl-glucosamine) on organogenesis in protocorm-like-bodies (PLBs) of C. insigne was studied. Synthetic phytohormones such as BA and TDZ (cytokinins) and NAA (auxin) were used for comparison. PLBs of C. insigne were explanted on modified Murashige and Skoog medium supplemented with the single addition of chitosan and NAG, and the combination of BA (benzyladenine) and NAA (1-naphthaleneacetic acid) also with the combination of NAA and TDZ (thidiazuron) among different concentrations. Combination treatments of auxin and cytokinins, the highest percentage of PLBs formation was 73% and shoot formation was 67% when cultured on the medium supplemented with 1.0 mg L1 BA without NAA. Combination treatment of NAA and TDZ, the PLBs formation was 90% and shoot formation was 60% obtained from medium supplemented with 1.0 mg Lt of NAA + 0.1 mg L^-1 TDZ. Single addition of chitosan and NAG with modified MS medium was more effective for new PLBs and shoot formation. The highest percentage of PLBs formation was 87% and shoot formation was 80% obtained from the medium supplemented with 0.1 mg L^-1 chitosan. On the other hand, the PLBs formation rate reached 93% and shoot formation rate was 87% obtained from the medium supplemented with 0.01 mg L^-1 NAG. Application of polysaccharides to in vitro orchid PLBs allows developing new PLBs and shoot to form plantlet without synthetic phytohormones.