To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-...To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.展开更多
With the implementation of the GEOTRACES program, the biogeochemical cycle and distribution of tellurium (Te) in marine environments are becoming increasing environmental concerns. In this study, the concentration o...With the implementation of the GEOTRACES program, the biogeochemical cycle and distribution of tellurium (Te) in marine environments are becoming increasing environmental concerns. In this study, the concentration of dissolved Te in the Changjiang (Yangtze) River estuary and nearby waters was determined in May 2009 by hydride-generation atomic fluorescence spectrometry to elucidate the abundance, dominant species, distribution, and relationship with environmental factors. Results show that: (1) dissolved Te was low owing to its low abundance in the Earth's crust, high insolubility in water, and strong affinity to particulate matter; (2) Te(IV) and Te(VI) predominated in surface water. Te(VI) was the dominant species in bottom water, and Te(IV) was the minor species; (3) Horizontally, resulting from low phytoplankton metabolism and the weak reduction from Te(VI) to Te(IV) in the shore, Te(IV) was concentrated in the central zone instead of the coastal region. However, Te(VI) was abundant near the mouth of the Changjiang River where the Changjiang water is diluted and in the area to the south where the Taiwan Warm Current invaded. In the adsorption-desorption process, Te(IV) was negatively related to suspended paniculate matter (SPM), indicating that it was adsorbed by particulate matter. While for Te(VI), the positive correlation with SPM suggested that it was desorbed from the solid phase. In the estuary, dissolved Te had a negative correlation to salinity. However, it deviated from the dilution line in high-salinity regions due to the invasion of the Taiwan Warm Current and the mineralization of organic matter. The relationship between Te(IV) and SPM nutrients indicated that it was more bioavailable and more related to phosphorus than to nitrogen. Progress in the field is slow and more research is needed to quantify the input of Te to the estuary and evaluate the biochemical role of organisms.展开更多
The lunar probe may still have some remaining fuel after completing its predefined Moon exploration mission and is able to carry out some additional scientific or technological tasks after escaping from the Moon orbit...The lunar probe may still have some remaining fuel after completing its predefined Moon exploration mission and is able to carry out some additional scientific or technological tasks after escaping from the Moon orbit.The Moon departure mission for the lunar probe is the focus of this paper.The possibility of the spacecraft orbiting the Moon to escape the Moon's gravitational pull is analyzed.The trajectory design for the Earth-Moon system libration point mission is studied in a full ephemeris dynamical model,which considers the non-uniform motion of the Moon around the Earth,the gravity of the Sun and planets and the finite thrust of the onboard engine.By applying the Particle Swarm Optimization algorithm,the trajectory design for the transfer from the Moon-centered orbit to the L1 halo orbit,the station-keeping strategies for the Earth-Moon halo orbit and the construction of homoclinic and heteroclinic orbits are investigated.Taking the tracking conditions and engineering constraints into account,two feasible schemes for the Moon departure libration point mission for the lunar probe are presented.展开更多
Relying on a solvent thermal method, spherical Na2Li2Ti6O14 was synthesized. All samples prepared by this method are hollow and hierarchical structures with the size of about 2-3 μtm, which are assembled by many prim...Relying on a solvent thermal method, spherical Na2Li2Ti6O14 was synthesized. All samples prepared by this method are hollow and hierarchical structures with the size of about 2-3 μtm, which are assembled by many primary nanoparticles (-300nm). Particle morphology analysis shows that with the increase of temperature, the porosity increases and the hollow structure becomes more obvious. Na2Li2Ti6Ol4 obtained at 800℃ exhibits the best electro- chemical performance among all samples. Charge-discharge results show that Na2Li2Ti6O14 prepared at 800℃ can delivers a reversible capacity of 220.1, 181.7, 161.6, 144.2, 118.1 and 97.2 mA h g-1 at 50, 140, 280, 560, 1400, 2800 mA g-1. How- ever, Na2Li2Ti6O4-bulk only delivers a reversible capacity of 187, 125.3, 108.3, 88.7, 69.2 and 54.8 mA h g-1 at the same current densities. The high electrochemical performances of the as-prepared materials can be attributed to the distinctive hollow and hierarchical spheres, which could effectively reduce the diffusion distance of Li ions, increase the con- tact area between electrodes and electrolyte, and buffer the volume changes during Li ion intercalation/deintercalation processes.展开更多
基金Project(60535010) supported by the National Nature Science Foundation of China
文摘To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.
基金Supported by the National Basic Research Program of China(973 Program)(No.2011CB403602)the National Natural Science Foundation of China(No.41121064)
文摘With the implementation of the GEOTRACES program, the biogeochemical cycle and distribution of tellurium (Te) in marine environments are becoming increasing environmental concerns. In this study, the concentration of dissolved Te in the Changjiang (Yangtze) River estuary and nearby waters was determined in May 2009 by hydride-generation atomic fluorescence spectrometry to elucidate the abundance, dominant species, distribution, and relationship with environmental factors. Results show that: (1) dissolved Te was low owing to its low abundance in the Earth's crust, high insolubility in water, and strong affinity to particulate matter; (2) Te(IV) and Te(VI) predominated in surface water. Te(VI) was the dominant species in bottom water, and Te(IV) was the minor species; (3) Horizontally, resulting from low phytoplankton metabolism and the weak reduction from Te(VI) to Te(IV) in the shore, Te(IV) was concentrated in the central zone instead of the coastal region. However, Te(VI) was abundant near the mouth of the Changjiang River where the Changjiang water is diluted and in the area to the south where the Taiwan Warm Current invaded. In the adsorption-desorption process, Te(IV) was negatively related to suspended paniculate matter (SPM), indicating that it was adsorbed by particulate matter. While for Te(VI), the positive correlation with SPM suggested that it was desorbed from the solid phase. In the estuary, dissolved Te had a negative correlation to salinity. However, it deviated from the dilution line in high-salinity regions due to the invasion of the Taiwan Warm Current and the mineralization of organic matter. The relationship between Te(IV) and SPM nutrients indicated that it was more bioavailable and more related to phosphorus than to nitrogen. Progress in the field is slow and more research is needed to quantify the input of Te to the estuary and evaluate the biochemical role of organisms.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832004 and 11072122)
文摘The lunar probe may still have some remaining fuel after completing its predefined Moon exploration mission and is able to carry out some additional scientific or technological tasks after escaping from the Moon orbit.The Moon departure mission for the lunar probe is the focus of this paper.The possibility of the spacecraft orbiting the Moon to escape the Moon's gravitational pull is analyzed.The trajectory design for the Earth-Moon system libration point mission is studied in a full ephemeris dynamical model,which considers the non-uniform motion of the Moon around the Earth,the gravity of the Sun and planets and the finite thrust of the onboard engine.By applying the Particle Swarm Optimization algorithm,the trajectory design for the transfer from the Moon-centered orbit to the L1 halo orbit,the station-keeping strategies for the Earth-Moon halo orbit and the construction of homoclinic and heteroclinic orbits are investigated.Taking the tracking conditions and engineering constraints into account,two feasible schemes for the Moon departure libration point mission for the lunar probe are presented.
基金supported by the National Natural Science Foundation of China (21301052 and 51404002)Natural Science Foundation of Heilongjiang Province (E2016056)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education (20132301120001)Postdoctoral Science-Research Developmental Foundation of Heilongjiang Province (LBH-Q13138)Applied Technology Research and Development Program of Harbin (2015RAQXJ032)
文摘Relying on a solvent thermal method, spherical Na2Li2Ti6O14 was synthesized. All samples prepared by this method are hollow and hierarchical structures with the size of about 2-3 μtm, which are assembled by many primary nanoparticles (-300nm). Particle morphology analysis shows that with the increase of temperature, the porosity increases and the hollow structure becomes more obvious. Na2Li2Ti6Ol4 obtained at 800℃ exhibits the best electro- chemical performance among all samples. Charge-discharge results show that Na2Li2Ti6O14 prepared at 800℃ can delivers a reversible capacity of 220.1, 181.7, 161.6, 144.2, 118.1 and 97.2 mA h g-1 at 50, 140, 280, 560, 1400, 2800 mA g-1. How- ever, Na2Li2Ti6O4-bulk only delivers a reversible capacity of 187, 125.3, 108.3, 88.7, 69.2 and 54.8 mA h g-1 at the same current densities. The high electrochemical performances of the as-prepared materials can be attributed to the distinctive hollow and hierarchical spheres, which could effectively reduce the diffusion distance of Li ions, increase the con- tact area between electrodes and electrolyte, and buffer the volume changes during Li ion intercalation/deintercalation processes.