This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with ...This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.展开更多
A new β-Ti based Ti35Nb2.5Sn/10 hydroxyapitite(HA) biocompatible composite was fabricated by mechanical milling and pulsed current activated sintering(PCAS).The microstructures of Ti35Nb2.5Sn/10HA powder particle...A new β-Ti based Ti35Nb2.5Sn/10 hydroxyapitite(HA) biocompatible composite was fabricated by mechanical milling and pulsed current activated sintering(PCAS).The microstructures of Ti35Nb2.5Sn/10HA powder particles and composites sintered from the milled powders were studied.Results indicated that α-Ti phase began to transform into β-Ti phase after the powders were mechanically milled for 8 h.After mechanical milling for 12 h,α-Ti completely transformed into β-Ti phase,and the ultra fine Ti35Nb2.5Sn/10HA composite powders were obtained.And ultra fine grain sized Ti35Nb2.5Sn/10HA sintered composites were obtained by PCAS.The hardness and relative density of the sintered composites both increased with increasing the ball milling time.展开更多
Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The mic...Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The microstructures of the milled powder and bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties of the extruded alloy were examined by mechanical testing machine. The results show that after BM, the particle size and microstructures of the mixed alloy powder change obviously. After 48 h BM, the average size of mixed powder is about 30 nm, and then after hot extrusion, the average size of grains reaches about 70 rim. The compressive strength of the extruded alloy reaches 710 MPa under certain conditions of milling time and composition. As a result of the identification of the nano-/micro-strueture-property relationship of the samples, such high strength is attributed mainly to the nanocrystalline grains of a(Al) and nanoscaled FeNiCrCoAl3 particles, and the fine secondary phase of Al2Cu and Fe-rich phases.展开更多
A lamellar-structure TC21 titanium alloy was hot-rolled and subsequently annealed at 820,880 and 940℃ for 1 and 6 h,and the effects of annealing parameters on static globularization and morphology evolution of bothα...A lamellar-structure TC21 titanium alloy was hot-rolled and subsequently annealed at 820,880 and 940℃ for 1 and 6 h,and the effects of annealing parameters on static globularization and morphology evolution of bothαandβphases were studied.The results show thatαglobularization process is sluggish due to the limited boundary splitting at 820℃.With increasing temperature to 880℃,the accelerated boundary splitting and termination migration promote theαglobularization.At 820 and 880℃,the static recovery(SRV)and recrystallization(SRX)induce the grain refinement of interlamellarβphase.However,the excessively high temperature of 940℃ results in the coarsening ofαgrains due to the assistance of Ostwald ripening,and produces coarseβgrains mainly due to the absence of SRX in interlamellarβphases.Conclusively,880℃ is an appropriate annealing temperature to produce a homogeneous microstructure in which globularizedαand refinedβgrains distribute homogeneously.展开更多
The work in this study is focused on investigation of composite nickel coatings. The coatings were deposited on ductile cast iron samples of different composition by electroless method EFTTOM NICKEL with addition of s...The work in this study is focused on investigation of composite nickel coatings. The coatings were deposited on ductile cast iron samples of different composition by electroless method EFTTOM NICKEL with addition of strengthening nanodiamond particles (2-4 nm), The samples were prepared by casting and austempering. The microstructure, microhardness and wear resistance of the coatings were investigated. The thickness of the coatings was also determined (8-10μm). Metallographic analyses, SEM (scanning electron microscopic) investigation, microhardness measurements by knoop method, wear resistance tests were carried out. The coatings with and without heat treatment at 290℃, 6 h were tested. Duplication of microhardness value and improvement of the coating's properties of heat treated coatings were observed.展开更多
Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, t...Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.展开更多
基金Merit-funded Science and Technology Project for Returned Oversea Scholars from Ministry of Human and Social Security of Shanxi provinceNatural Science Foundation for Young Scientists of Shanxi province(No.2011011020-2)Shanxi Province Foundation for Returness(No.2008062)
文摘This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.
基金Project(ZJY0605-02) supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(310703002) supported by the National Research Foundation of Korea(NRF) grant funded Korea Government
文摘A new β-Ti based Ti35Nb2.5Sn/10 hydroxyapitite(HA) biocompatible composite was fabricated by mechanical milling and pulsed current activated sintering(PCAS).The microstructures of Ti35Nb2.5Sn/10HA powder particles and composites sintered from the milled powders were studied.Results indicated that α-Ti phase began to transform into β-Ti phase after the powders were mechanically milled for 8 h.After mechanical milling for 12 h,α-Ti completely transformed into β-Ti phase,and the ultra fine Ti35Nb2.5Sn/10HA composite powders were obtained.And ultra fine grain sized Ti35Nb2.5Sn/10HA sintered composites were obtained by PCAS.The hardness and relative density of the sintered composites both increased with increasing the ball milling time.
基金Project(2012CB619503)supported by the Nation Basic Research Program of ChinaProject(2013AA031001)supported by the National High Technology Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The microstructures of the milled powder and bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties of the extruded alloy were examined by mechanical testing machine. The results show that after BM, the particle size and microstructures of the mixed alloy powder change obviously. After 48 h BM, the average size of mixed powder is about 30 nm, and then after hot extrusion, the average size of grains reaches about 70 rim. The compressive strength of the extruded alloy reaches 710 MPa under certain conditions of milling time and composition. As a result of the identification of the nano-/micro-strueture-property relationship of the samples, such high strength is attributed mainly to the nanocrystalline grains of a(Al) and nanoscaled FeNiCrCoAl3 particles, and the fine secondary phase of Al2Cu and Fe-rich phases.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51971046)the Fundamental Research Funds for the Central Universities,China(No.2020CDJGFCL005)。
文摘A lamellar-structure TC21 titanium alloy was hot-rolled and subsequently annealed at 820,880 and 940℃ for 1 and 6 h,and the effects of annealing parameters on static globularization and morphology evolution of bothαandβphases were studied.The results show thatαglobularization process is sluggish due to the limited boundary splitting at 820℃.With increasing temperature to 880℃,the accelerated boundary splitting and termination migration promote theαglobularization.At 820 and 880℃,the static recovery(SRV)and recrystallization(SRX)induce the grain refinement of interlamellarβphase.However,the excessively high temperature of 940℃ results in the coarsening ofαgrains due to the assistance of Ostwald ripening,and produces coarseβgrains mainly due to the absence of SRX in interlamellarβphases.Conclusively,880℃ is an appropriate annealing temperature to produce a homogeneous microstructure in which globularizedαand refinedβgrains distribute homogeneously.
文摘The work in this study is focused on investigation of composite nickel coatings. The coatings were deposited on ductile cast iron samples of different composition by electroless method EFTTOM NICKEL with addition of strengthening nanodiamond particles (2-4 nm), The samples were prepared by casting and austempering. The microstructure, microhardness and wear resistance of the coatings were investigated. The thickness of the coatings was also determined (8-10μm). Metallographic analyses, SEM (scanning electron microscopic) investigation, microhardness measurements by knoop method, wear resistance tests were carried out. The coatings with and without heat treatment at 290℃, 6 h were tested. Duplication of microhardness value and improvement of the coating's properties of heat treated coatings were observed.
文摘Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.