Several NNW-trending Cretaceous rhyolite dikes in the northeastern Cheongsong area of southern Korea contain spherulitic fabrics and are locally quarried as an ornamental stone. The dikes, part of the Cheongsong dike ...Several NNW-trending Cretaceous rhyolite dikes in the northeastern Cheongsong area of southern Korea contain spherulitic fabrics and are locally quarried as an ornamental stone. The dikes, part of the Cheongsong dike swarm, contain a variety of spherulites which are characterized by radial array of acicular intergrowths from fibrous quartz and alkali feldspars. They are classified as some simple, multiple and compound spherulite types from flower-like patterns, and the types are different each other in spatial distribution within the dikes. The various radial fabrics suggest that they crystallized under the different cooling mechanisms and processes in rapidly cooling dikes. Spheroids lacking a flower-like pattern may be precipitated after compositional segregation in a supercooled magma. Simple acicular spherulites could be crystallized by devitrification of true glass which cooled rapidly below the transformation temperature, whereas layered multiple spherulites could result from a crystallization of supercooled magma at relatively rapid cooling rates above the transformation temperature. Acicular multiple spherulites could be produced from a combination of the above three mechanisms operating at slower cooling rates.展开更多
文摘Several NNW-trending Cretaceous rhyolite dikes in the northeastern Cheongsong area of southern Korea contain spherulitic fabrics and are locally quarried as an ornamental stone. The dikes, part of the Cheongsong dike swarm, contain a variety of spherulites which are characterized by radial array of acicular intergrowths from fibrous quartz and alkali feldspars. They are classified as some simple, multiple and compound spherulite types from flower-like patterns, and the types are different each other in spatial distribution within the dikes. The various radial fabrics suggest that they crystallized under the different cooling mechanisms and processes in rapidly cooling dikes. Spheroids lacking a flower-like pattern may be precipitated after compositional segregation in a supercooled magma. Simple acicular spherulites could be crystallized by devitrification of true glass which cooled rapidly below the transformation temperature, whereas layered multiple spherulites could result from a crystallization of supercooled magma at relatively rapid cooling rates above the transformation temperature. Acicular multiple spherulites could be produced from a combination of the above three mechanisms operating at slower cooling rates.