针对柑橘果、叶、枝对象具有球体、片体和细柱体不同的三维几何特征,提出一种识别柑橘果实的深度球截线方法。首先提出了球形果实特征提取的深度球截线方法的基本原理和关键参数,进而分别针对枝上果、叶孤立和贴碰区域提出了孤立果实的...针对柑橘果、叶、枝对象具有球体、片体和细柱体不同的三维几何特征,提出一种识别柑橘果实的深度球截线方法。首先提出了球形果实特征提取的深度球截线方法的基本原理和关键参数,进而分别针对枝上果、叶孤立和贴碰区域提出了孤立果实的特征提取算法和贴碰果实的特征提取算法,得到了复杂枝环境下的深度数据处理与果实识别策略,并综合根据Intel Real Sense F200型深度传感器参数、柑橘果实尺寸、近景探测范围、数据预处理与特征提取需要完成了深度球截线方法的参数确定。大量室内试验结果表明,深度球截线方法对孤立果实提取的平均成功率为97.8%,贴碰区域内果实提取的平均成功率为76%,而复杂枝环境的果实提取综合成功率为63.8%。该深度球截线的识别方法仅利用有限的深度数据点,在保证原始数据精度的同时降低了运算量和果实特征提取复杂性,能有效应对果叶遮挡问题,实现对贴碰果叶的有效区分,对柑橘果实具有良好的适应性,为采摘机器人在复杂环境下的果实识别与定位提供了新的技术思路。展开更多
文摘针对柑橘果、叶、枝对象具有球体、片体和细柱体不同的三维几何特征,提出一种识别柑橘果实的深度球截线方法。首先提出了球形果实特征提取的深度球截线方法的基本原理和关键参数,进而分别针对枝上果、叶孤立和贴碰区域提出了孤立果实的特征提取算法和贴碰果实的特征提取算法,得到了复杂枝环境下的深度数据处理与果实识别策略,并综合根据Intel Real Sense F200型深度传感器参数、柑橘果实尺寸、近景探测范围、数据预处理与特征提取需要完成了深度球截线方法的参数确定。大量室内试验结果表明,深度球截线方法对孤立果实提取的平均成功率为97.8%,贴碰区域内果实提取的平均成功率为76%,而复杂枝环境的果实提取综合成功率为63.8%。该深度球截线的识别方法仅利用有限的深度数据点,在保证原始数据精度的同时降低了运算量和果实特征提取复杂性,能有效应对果叶遮挡问题,实现对贴碰果叶的有效区分,对柑橘果实具有良好的适应性,为采摘机器人在复杂环境下的果实识别与定位提供了新的技术思路。