基于球形发散波实验技术及圆环型电磁粒子速度测试技术,采用0.125 g TNT当量的微型炸药作为爆炸源,对填实爆炸下有机玻璃中球形波的传播规律进行了实验研究,并基于粒子速度波形进行了分析。结果表明:粒子速度峰值及粒子位移峰值符合指...基于球形发散波实验技术及圆环型电磁粒子速度测试技术,采用0.125 g TNT当量的微型炸药作为爆炸源,对填实爆炸下有机玻璃中球形波的传播规律进行了实验研究,并基于粒子速度波形进行了分析。结果表明:粒子速度峰值及粒子位移峰值符合指数衰减规律,粒子速度、位移峰值的衰减指数分别为1.34和1.28;负向粒子速度峰值随比距离的增加有先增大后减小的趋势;基于强间断假设得到的低压(小于1 GPa)下径向压力峰值-粒子速度峰值关系与一维应变下得到的σ-v Hugoniot曲线吻合较好;采用变模量模型假设,结合粒子速度数据反演的有机玻璃弹性模量E=(6.40±0.64)GPa、体积模量K=(7.12±0.71)GPa、剪切模量G=(2.37±0.24)GPa。展开更多
基于球形发散波实验技术及圆环型电磁粒子速度测试技术,采用0.125 g TNT当量的微型炸药作为爆炸源,对填实爆炸下有机玻璃中球形波的传播规律进行了实验研究,并基于粒子速度波形进行了分析.结果表明:粒子速度、位移幅值的衰减指数分别为1...基于球形发散波实验技术及圆环型电磁粒子速度测试技术,采用0.125 g TNT当量的微型炸药作为爆炸源,对填实爆炸下有机玻璃中球形波的传播规律进行了实验研究,并基于粒子速度波形进行了分析.结果表明:粒子速度、位移幅值的衰减指数分别为1.34和1.28,粒子速度幅值及粒子位移幅值符合指数衰减规律;负向粒子速度幅值随比距离的增加有先增大后减少的趋势;基于强间断假设得到的低压下(小于1 GPa)径向压力幅值σ粒子速度幅值υ关系和一维应变下得到的σ-υHugoniot曲线吻合较好;采用变模量模型假设,结合粒子速度数据反演的有机玻璃力弹性模量E为(6.40±0.64) GPa、体积模量K为(7.12±0.71) GPa、剪切模量G为(2.37±0.24) GPa.展开更多
The problem of an ellipsoidal inhomogeneity embedded in an infinitely extended elastic medium with sliding interfaces is investigated. An exact solution is presented for such an inhomogeneous system that is subject to...The problem of an ellipsoidal inhomogeneity embedded in an infinitely extended elastic medium with sliding interfaces is investigated. An exact solution is presented for such an inhomogeneous system that is subject to remote uniform shearing stress. Both the elastic inclusion and matrix are considered isotropic with a separate elastic modulus. Based on Lur’e’s approach to solving ellipsoidal cavity problems through Lamé functions, several harmonic functions are introduced for Papkovich-Neuber displacement potentials. The displacement fields inside and outside the ellipsoidal inclusion are obtained explicitly, and the stress field in the whole domain is consequently determined.展开更多
文摘基于球形发散波实验技术及圆环型电磁粒子速度测试技术,采用0.125 g TNT当量的微型炸药作为爆炸源,对填实爆炸下有机玻璃中球形波的传播规律进行了实验研究,并基于粒子速度波形进行了分析。结果表明:粒子速度峰值及粒子位移峰值符合指数衰减规律,粒子速度、位移峰值的衰减指数分别为1.34和1.28;负向粒子速度峰值随比距离的增加有先增大后减小的趋势;基于强间断假设得到的低压(小于1 GPa)下径向压力峰值-粒子速度峰值关系与一维应变下得到的σ-v Hugoniot曲线吻合较好;采用变模量模型假设,结合粒子速度数据反演的有机玻璃弹性模量E=(6.40±0.64)GPa、体积模量K=(7.12±0.71)GPa、剪切模量G=(2.37±0.24)GPa。
基金supported by the National Natural Science Foundation of China(Grant No.11102022)
文摘The problem of an ellipsoidal inhomogeneity embedded in an infinitely extended elastic medium with sliding interfaces is investigated. An exact solution is presented for such an inhomogeneous system that is subject to remote uniform shearing stress. Both the elastic inclusion and matrix are considered isotropic with a separate elastic modulus. Based on Lur’e’s approach to solving ellipsoidal cavity problems through Lamé functions, several harmonic functions are introduced for Papkovich-Neuber displacement potentials. The displacement fields inside and outside the ellipsoidal inclusion are obtained explicitly, and the stress field in the whole domain is consequently determined.