期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
2型球面超曲面
1
作者 吴炳烨 《数学年刊(A辑)》 CSCD 北大核心 1996年第4期483-486,共4页
本文证明了2型球面紧致超曲面具有常纯量曲率和常平均曲率,因而是质量对称的.
关键词 曲面 常平均曲率 球面超曲面 常纯量曲率
下载PDF
非球面曲面超精密加工机床研制成功
2
作者 嵇京 《机械工程师》 2003年第7期5-5,共1页
关键词 球面曲面精密加工机床 研制 光学零件 精密加工 面形精度 表面粗糙度
下载PDF
The Isospectrum Problem of Compact Hypersurfaces on a Sphere
3
作者 徐森林 庞华栋 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第2期1-6,共6页
In this paper, we discuss the isospectrum of totally umbilical hypersurfaces with totally geodesic hypersurfaces on a sphere.
关键词 ISOSPECTRUM totally umbilical hypersurface totally geodesic hypersurface
下载PDF
Hypersurfaces with constant mean curvature in unit sphere
4
作者 王佩君 潮小李 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期132-134,共3页
The pinching of n-dimensional closed hypersurface Mwith constant mean curvature H in unit sphere S^(n+1)( 1) is considered. Let A = ∑i,j,k h(ijk)~2( λi+ nH)~2,B = ∑i,j,k h(ijk)~2( λi+ nH) ·( ... The pinching of n-dimensional closed hypersurface Mwith constant mean curvature H in unit sphere S^(n+1)( 1) is considered. Let A = ∑i,j,k h(ijk)~2( λi+ nH)~2,B = ∑i,j,k h(ijk)~2( λi+ nH) ·( λj+ nH),S = ∑i( λi+ nH)~2, where h(ij)= λiδ(ij). Utilizing Lagrange's method, a sharper pointwise estimation of 3(A- 2B) in terms of S and |▽h|~2 is obtained, here |▽h|~2= ∑i,j,k h(ijk)~2. Then, with the help of this, it is proved that Mis isometric to the Clifford hypersurface if the square norm of the second fundamental form of Msatisfies certain conditions. Hence, the pinching result of the minimal hypersurface is extended to the hypersurface with constant mean curvature case. 展开更多
关键词 hypersurface with constant mean curvature unit sphere PINCHING
下载PDF
Mbius Homogeneous Hypersurfaces with Three Distinct Principal Curvatures in S^(n+1) 被引量:7
5
作者 Tongzhu LI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第5期1131-1144,共14页
Let x : M^n→S^n+1 be an immersed hypersurface in the (n +1)-dimensional sphere S^n+1. If, for any points p,q ∈ M^n, there exists a Mobius transformation Ф : S^n+l →S^n+1 such that Ф o x(M^n) = x(M^n)... Let x : M^n→S^n+1 be an immersed hypersurface in the (n +1)-dimensional sphere S^n+1. If, for any points p,q ∈ M^n, there exists a Mobius transformation Ф : S^n+l →S^n+1 such that Ф o x(M^n) = x(M^n) and Ф o x(p) = x(q), then the hypersurface is called a Mobius homogeneous hypersurface. In this paper, the Mobius homogeneous hypersurfaces with three distinct principal curvatures are classified completely up to a Mobius transformation. 展开更多
关键词 Mobius transformation group Conformal transformation group Mobius homogeneous hypersurfaces MSbius isoparametric hypersurfaces
原文传递
On the Blaschke isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigenvalues 被引量:7
6
作者 HU ZeJun LI XingXiao ZHAI ShuJie 《Science China Mathematics》 SCIE 2011年第10期2171-2194,共24页
An immersed umbilic-free submanifold in the unit sphere is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. In this paper, we give a complete clas... An immersed umbilic-free submanifold in the unit sphere is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. In this paper, we give a complete classification for all Blaschke isoparametric hypersurfaces with three distinct Blaschke eigenvalues. 展开更多
关键词 Blaschke isoparametric hypersurface Mobius metric MSbius form Blaschke tensor MSbius second fundamental form
原文传递
The Inverse Mean Curvature Flow in Rotationally Symmetric Spaces 被引量:3
7
作者 Qi DING 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第1期27-44,共18页
In this paper,the motion of inverse mean curvature flow which starts from a closed star-sharped hypersurface in special rotationally symmetric spaces is studied.It is proved that the flow converges to a unique geodesi... In this paper,the motion of inverse mean curvature flow which starts from a closed star-sharped hypersurface in special rotationally symmetric spaces is studied.It is proved that the flow converges to a unique geodesic sphere,i.e.,every principle curvature of the hypersurfaces converges to a same constant under the flow. 展开更多
关键词 Asymptotic behavior Inverse mean curvature flow Hyperbolic space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部