TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti...TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.展开更多
The effect of complex melt-refining treatment (melt flux incorporating with rotating gas bubble stirring) on microstructure and mechanical behavior of the sand-cast Mg-10Gd-3Y-0.5Zr alloy was investigated. In additi...The effect of complex melt-refining treatment (melt flux incorporating with rotating gas bubble stirring) on microstructure and mechanical behavior of the sand-cast Mg-10Gd-3Y-0.5Zr alloy was investigated. In addition, the melt purifying mechanism of the complex melt-refining treatment for the sand-cast alloy was discussed systematically. The results show that the new melt-refining method can significantly improve melt quality and mechanical behavior of the tested alloy, i.e., compared to the reference unpttdfied alloy, the volume fraction of inclusions decreased from 0.47% to 0.28%, the ultimate tensile strength and elongation for T6-treated alloy increased from 245 MPa and 0.7% to 312 MPa and 4.5%, respectively. Especially, combining 1% flux with rotating gas bubble stirring can get even better purifying effectiveness than conventional sole 2% flux purification; the use of melt flux decreased by 50% and significantly reduced environmental pollution.展开更多
A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recover...A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is l(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, rheoiogical paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 YuarffL good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.展开更多
In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good elect...In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.展开更多
Al-FeCoNiCrAl high entropy alloy(HEA) composite coatings were prepared on Ti-6Al-4V via highenergy mechanical alloying(MA). The microstructures and phase composition of the coatings were studied. A continuous and dens...Al-FeCoNiCrAl high entropy alloy(HEA) composite coatings were prepared on Ti-6Al-4V via highenergy mechanical alloying(MA). The microstructures and phase composition of the coatings were studied. A continuous and dense coating could be fabricated at a ratio of 35%(weight fraction)Al-FeCoNiCrAl after 4 h milling.The results showed that the thickness of the composite coatings increased first and then decreased with the increase of milling time. And the hardness of coating increased with the increase of milling time. The phase changed during the annealing process. Part of the initial body-centered cubic(BCC)phase of the composite coatings changed into the L12 phase,(Ni,Co)3Al4 and σ phase after annealing above 550 ℃. Ordered BCC was found in the coatings after annealing above 750 ℃. Only BCC and ordered BCC appeared in coatings after annealing above 1 050 ℃. The hardness of the coatings after annealing at 550 ℃ and 750 ℃ was higher than before because of spinodal decomposition and high hardness σ phase. The hardness of the coatings after annealing at 1 050 ℃ decreased because residual stress released.展开更多
The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The...The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation.展开更多
The effectiveness of enhancing treatment of water with low turbidity through combined effects of permanganate oxidation, PAM aiding coagulation and sludge recycling was investigated through continuous bench scale stud...The effectiveness of enhancing treatment of water with low turbidity through combined effects of permanganate oxidation, PAM aiding coagulation and sludge recycling was investigated through continuous bench scale studies. In comparing with ferric chloride coagulation, only recycling sedimentation sludge was ineffective in enhancing treatment of water with low turbidity. PAM with recycled sludge showed positive effects, and the additional permanganate dosing exhibited the best potential of favoring coagulation, which leaded to much lower effluent turbidity and CODMa. Additionally, it was observed that the optimal permanganate dosage was 0. 4 mg/ L and the higher permanganate dosage exhibited inhibiting effects for pollutants removal. SEM analysis indicated that the floes were loosely formed and the particle diameter was critically low for ferric chloride coagulation process. Comparatively, the addition of PAM and permanganate with recycled sludge facilitated the aggregation of tinny particles onto compact PAM polymer chains, therefore contributing to the formation of compact floes with high particle diameter. The combined employment of recycled sludge, PAM and permanganate showed the best potential of favoring coagulation, mainly through synergistic effects between seeding, polymer bridging and increasing effective collision in mechanism. Additionally, the variation of Fe and Mn concentration after recycling and sedimentating units was studied for the processes, and the main species was also investigated for elements Fe and Mn. Sludge recycling and permanganate addition did not increase Fe and Mn concentration in the sedimented water.展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing. Solid matrix is the principal pillar supporting the successful application of EBA. A novel spherical cellulose-titanium dioxid...Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing. Solid matrix is the principal pillar supporting the successful application of EBA. A novel spherical cellulose-titanium dioxide composite matrix was prepared through the method of water-in-oil suspension thermal regeneration. Its typical physical properties were wet density 1.18g.cm-3, diameters in the range of 100-300um, porosity 85.5%, and water content 72.3%. Expansion characteristics and liquid mixing performance of the matrix in expanded bed were investigated using water and 10% (by mass) glycerol solution as mobile phases. The results indicate that the custom-assembled matrix has a stable flow hydrodynamics and exhibits the same degree of liquid-phase mixing or column efficiency as the commercially available Streamline adsorbent.展开更多
The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration product...The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.展开更多
Magnetically modified palygorskite composites were synthesized with γ-Fe2O3 dispersing on the external surface of clay mineral. The magnetic clay was characterized with Fourier transform infrared, X-ray diffrac- tion...Magnetically modified palygorskite composites were synthesized with γ-Fe2O3 dispersing on the external surface of clay mineral. The magnetic clay was characterized with Fourier transform infrared, X-ray diffrac- tion, transmission electron microscopy, and vibrating sample magnetometer. Candida sp. 99-125 lipase was immobilized on magnetic palygorskite composites by physical adsorption with enzyme loading of 41.5 mg· g^-1 support and enzyme activity of 2631.6 U· (g support)^-1. The immobilized lipase exhibit better thermal and broader pH stability and excellent reusabilitV compared with free lipase.展开更多
The light weight heat treated B-grade bulletproof steel was developed through composition design and optimization based on multiplex alloying,multiplex micro-alloying design ideas and complex phase structure strengthe...The light weight heat treated B-grade bulletproof steel was developed through composition design and optimization based on multiplex alloying,multiplex micro-alloying design ideas and complex phase structure strengthening theory.The puzzle how to avoid the quenching deformation problem of super high strength thin sheet was solved through heat treatment in a die with a set of cooling system.Such B-grade bulletproof steel plate has fine tempered lath martensite structure.The shooting and certification test results showed that the shoot resistance of B-grade bulletproof steel plate can meet the protection demand of Protection specification for cash carrying vehicles(GA 164—2005).In comparison with B-grade bulletproof steel plate made by one of the companies in Sweden,the weight of the developed B-grade bulletproof steel plate can be decreased by 8 %under the same shoot resistance condition.It will be meaningful for cash truck and anti-hijacking vehicle to realize light weight,energy conservation and emission reduction.展开更多
基金supports from the National Natural Science Foundation of China(Nos.52075472,52004242)the National Key Research and Development Program of China(No.2018YFA0707300)the Natural Science Foundation of Hebei Province,China(No.E2020203001)。
文摘TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.
基金Project(USCAST2012-15) supported by the SAST-SJTU Joint Research Centre of Advanced Aerospace TechnologyProject(B type,14QB1403200) supported by the Shanghai Rising-Star Program,China+1 种基金Projects(20120073120011,20130073110052) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(IPP9084) supported by IPP program in SJTU,China
文摘The effect of complex melt-refining treatment (melt flux incorporating with rotating gas bubble stirring) on microstructure and mechanical behavior of the sand-cast Mg-10Gd-3Y-0.5Zr alloy was investigated. In addition, the melt purifying mechanism of the complex melt-refining treatment for the sand-cast alloy was discussed systematically. The results show that the new melt-refining method can significantly improve melt quality and mechanical behavior of the tested alloy, i.e., compared to the reference unpttdfied alloy, the volume fraction of inclusions decreased from 0.47% to 0.28%, the ultimate tensile strength and elongation for T6-treated alloy increased from 245 MPa and 0.7% to 312 MPa and 4.5%, respectively. Especially, combining 1% flux with rotating gas bubble stirring can get even better purifying effectiveness than conventional sole 2% flux purification; the use of melt flux decreased by 50% and significantly reduced environmental pollution.
基金Projects 2006BAB02A03 supported by the National Key Technology Research and Development ProgramProjects 2006BA02B05 by the 11th Five Year Key Program for Science and Technology Development of China
文摘A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is l(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, rheoiogical paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 YuarffL good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.
基金supported by the National Natural Science Foundation of China(Nos.51871068,51771060,51971071,52011530025)Domain Foundation of Equipment Advance Research of 13th Five-year Plan,China(No.61409220118)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.3072020CFT1006)the Fundamental Research Funds for the Heilongjiang Universities,China(No.2020-KYYWF-0532)PhD Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities,China(No.3072021GIP1002)Zhejiang Province Key Research and Development Plan,China(No.2021C01086)。
文摘In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.
文摘Al-FeCoNiCrAl high entropy alloy(HEA) composite coatings were prepared on Ti-6Al-4V via highenergy mechanical alloying(MA). The microstructures and phase composition of the coatings were studied. A continuous and dense coating could be fabricated at a ratio of 35%(weight fraction)Al-FeCoNiCrAl after 4 h milling.The results showed that the thickness of the composite coatings increased first and then decreased with the increase of milling time. And the hardness of coating increased with the increase of milling time. The phase changed during the annealing process. Part of the initial body-centered cubic(BCC)phase of the composite coatings changed into the L12 phase,(Ni,Co)3Al4 and σ phase after annealing above 550 ℃. Ordered BCC was found in the coatings after annealing above 750 ℃. Only BCC and ordered BCC appeared in coatings after annealing above 1 050 ℃. The hardness of the coatings after annealing at 550 ℃ and 750 ℃ was higher than before because of spinodal decomposition and high hardness σ phase. The hardness of the coatings after annealing at 1 050 ℃ decreased because residual stress released.
文摘The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2004AA601020)
文摘The effectiveness of enhancing treatment of water with low turbidity through combined effects of permanganate oxidation, PAM aiding coagulation and sludge recycling was investigated through continuous bench scale studies. In comparing with ferric chloride coagulation, only recycling sedimentation sludge was ineffective in enhancing treatment of water with low turbidity. PAM with recycled sludge showed positive effects, and the additional permanganate dosing exhibited the best potential of favoring coagulation, which leaded to much lower effluent turbidity and CODMa. Additionally, it was observed that the optimal permanganate dosage was 0. 4 mg/ L and the higher permanganate dosage exhibited inhibiting effects for pollutants removal. SEM analysis indicated that the floes were loosely formed and the particle diameter was critically low for ferric chloride coagulation process. Comparatively, the addition of PAM and permanganate with recycled sludge facilitated the aggregation of tinny particles onto compact PAM polymer chains, therefore contributing to the formation of compact floes with high particle diameter. The combined employment of recycled sludge, PAM and permanganate showed the best potential of favoring coagulation, mainly through synergistic effects between seeding, polymer bridging and increasing effective collision in mechanism. Additionally, the variation of Fe and Mn concentration after recycling and sedimentating units was studied for the processes, and the main species was also investigated for elements Fe and Mn. Sludge recycling and permanganate addition did not increase Fe and Mn concentration in the sedimented water.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.
基金Supported by the National Natural Science Foundation of China(No.20076042,No.20206029)and the Scientific Research Foundation of the State Education Ministry for the Returned Overseas Chinese Scholars(No.2002-247).
文摘Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing. Solid matrix is the principal pillar supporting the successful application of EBA. A novel spherical cellulose-titanium dioxide composite matrix was prepared through the method of water-in-oil suspension thermal regeneration. Its typical physical properties were wet density 1.18g.cm-3, diameters in the range of 100-300um, porosity 85.5%, and water content 72.3%. Expansion characteristics and liquid mixing performance of the matrix in expanded bed were investigated using water and 10% (by mass) glycerol solution as mobile phases. The results indicate that the custom-assembled matrix has a stable flow hydrodynamics and exhibits the same degree of liquid-phase mixing or column efficiency as the commercially available Streamline adsorbent.
基金Project(51208391) supported by the National Natural Science Foundation of China
文摘The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.
基金the National Basic Research Program of China(2009CB724700)the Foundation of Jiangsu Province of China for College Postgraduate Students in Innovation Engineering(CXZZ12_0440)
文摘Magnetically modified palygorskite composites were synthesized with γ-Fe2O3 dispersing on the external surface of clay mineral. The magnetic clay was characterized with Fourier transform infrared, X-ray diffrac- tion, transmission electron microscopy, and vibrating sample magnetometer. Candida sp. 99-125 lipase was immobilized on magnetic palygorskite composites by physical adsorption with enzyme loading of 41.5 mg· g^-1 support and enzyme activity of 2631.6 U· (g support)^-1. The immobilized lipase exhibit better thermal and broader pH stability and excellent reusabilitV compared with free lipase.
文摘The light weight heat treated B-grade bulletproof steel was developed through composition design and optimization based on multiplex alloying,multiplex micro-alloying design ideas and complex phase structure strengthening theory.The puzzle how to avoid the quenching deformation problem of super high strength thin sheet was solved through heat treatment in a die with a set of cooling system.Such B-grade bulletproof steel plate has fine tempered lath martensite structure.The shooting and certification test results showed that the shoot resistance of B-grade bulletproof steel plate can meet the protection demand of Protection specification for cash carrying vehicles(GA 164—2005).In comparison with B-grade bulletproof steel plate made by one of the companies in Sweden,the weight of the developed B-grade bulletproof steel plate can be decreased by 8 %under the same shoot resistance condition.It will be meaningful for cash truck and anti-hijacking vehicle to realize light weight,energy conservation and emission reduction.