Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters wi...Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.展开更多
To facilitate system integration and evolution, modeling of complex systems requires a complementary management of system requirements and the architecture. Software tools are essential to support the above management...To facilitate system integration and evolution, modeling of complex systems requires a complementary management of system requirements and the architecture. Software tools are essential to support the above management effectively. The envisaged analysis tool for requirement and architecture management (ATRAM) is used to address the following 3 issues: (1) system requirements; (2) architecture presentation (modeling); (3) representation (marking-up) and traceability between the components of both sides. In ATRAM, a set of analysis tools is proposed. It includes a tool assisting in the generation/development of requirement documents pertaining to the architecture of composed systems, and an XML based tool for interoperability checking. It is useful for analyzing the influences of the change on enterprise system requirements or the architecture.展开更多
The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existin...The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the self- consistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BL Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction.展开更多
Realistic modeling and rendering of dynamic tornado scene is recognized as a challenging task for researchers of computer graphics. In this paper a new physically based method for simulating and animating tornado scen...Realistic modeling and rendering of dynamic tornado scene is recognized as a challenging task for researchers of computer graphics. In this paper a new physically based method for simulating and animating tornado scene is presented. We first propose a Two-Fluid model based on the physical theory of tornado, then we simulate the flow of tornado and its interaction with surrounding objects such as debris, etc. Taking the scattering and absorption of light by the participating media into account, the illumination effects of the tornado scene can be generated realistically. With the support of graphics hardware, various kinds of dynamic tornado scenes can be rendered at interactive rates.展开更多
The full alumina dissolution process in aluminum electrolysis cells was investigated using an improved computational fluid dynamics(CFD)model based on the previous researches by consideration of agglomerate formation....The full alumina dissolution process in aluminum electrolysis cells was investigated using an improved computational fluid dynamics(CFD)model based on the previous researches by consideration of agglomerate formation.The results show that the total mass of alumina agglomerate and its maximum size are mainly dependent on the feeding amount and increase with increasing it.Higher superheat can effectively inhibit the agglomerate formation and thus promote the full alumina dissolution behavior.The full alumina dissolution process mainly includes a fast stage and a slow stage,with an average dissolution rate of 17.24 kg/min and 1.53 kg/min,respectively.About 50%(mass percentage)of the total alumina particles,almost all of which are the well-dispersed alumina fine grains,dissolve within the fast dissolution stage of about 10 s.The maximum values of the average dissolution rate and final percentage of the cumulative dissolved alumina mass are obtained with a feeding amount of 1.8 kg for a superheat of 12℃.The formation of the alumina agglomerates and slow dissolution characteristics play a dominant role in the full dissolution of alumina particles.展开更多
A novel layered method was proposed to solve the problem of Web services composition.In this method,services composition problem was formally transformed into the optimal matching problem of every layer,then optimal m...A novel layered method was proposed to solve the problem of Web services composition.In this method,services composition problem was formally transformed into the optimal matching problem of every layer,then optimal matching problem was modeled based on the hypergraph theory,and solved by computing the minimal transversals of the hypergraph.Meanwhile,two optimization algorithms were designed to discard some useless states at the intermediary steps of the composition algorithm.The effectiveness of the composition method was tested by a set of experiments,in addition,an example regarding the travel services composition was also given.The experimental results show that this method not only can automatically generate composition tree whose leaf nodes correspond to services composition solutions,but also has better performance on execution time and solution quality by adopting two proposed optimization algorithms.展开更多
In order to speed up and simplify the design of the quadrotor unmanned aerial vehicle(UAV)and carry out experimental simulation and verification of relevant control algorithms,this paper analyzed the system dynamics m...In order to speed up and simplify the design of the quadrotor unmanned aerial vehicle(UAV)and carry out experimental simulation and verification of relevant control algorithms,this paper analyzed the system dynamics model of the mechanical structure and flight principle of the quadrotor aircraft,and used the Newton-Euler method to derive the non-linear dynamic equations.Aiming at improving the modeling accuracy and system integrity of the quadrotor,the physical system modeling was combined with the CAD software and the Matlab/Simscape toolbox.The three-dimensional quadrotor solid model built by CAD software was imported into the Simscape simulation platform to construct the body and power system model of the quadrotor.Based on this,the control algorithm designed by Simulink was added to the simulation platform to facilitate the experiment verification and parameter tuning.The simulation results show that the designed aircraft can achieve hover and tracking well and meet the control performance requirements of the system.展开更多
In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indi...In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indicate that the evolutions of wave velocities became progressively anisotropic under uniaxial loading due to the direction-dependent development of micro-damage.A wave velocity model considering the inner anisotropic crack evolution is proposed to accurately describe the variations of wave velocities during uniaxial compression testing.Based on which,the effective elastic parameters are inferred by a transverse isotropic constitutive model,and the evolutions of the crack density are inversed using a self-consistent damage model.It is found that the propagation of axial cracks dominates the failure process of brittle rock under uniaxial loading and oblique shear cracks develop with the appearance of macrocrack.展开更多
Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a C...Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.展开更多
In this paper, a free-space vortex channel model of the radio vortex system is proposed to describe the propagation characteristics of vortex signals over the vortex channel. The key idea is to combine the Laguerre-Ga...In this paper, a free-space vortex channel model of the radio vortex system is proposed to describe the propagation characteristics of vortex signals over the vortex channel. The key idea is to combine the Laguerre-Gaussian(LG) modes in the optical field with the free-space propagation model in the radio field. The proposed free-space vortex channel model is derived from the electric field expression of the LG modes and the freespace channel transfer function of the freespace propagation model theoretically. Simulation results verify that the proposed model could reflect the vortex channel characteristics better than the currently used free-space propagation model.展开更多
As a variant of process algebra, π calculus can describe the interactions between evolving processes. By modeling activity as a process interacting with other processes through ports, this paper presents a new appro...As a variant of process algebra, π calculus can describe the interactions between evolving processes. By modeling activity as a process interacting with other processes through ports, this paper presents a new approach: representing workflow models using π calculus. As a result, the model can characterize the dynamic behaviors of the workflow process in terms of the LTS (Labeled Transition Semantics) semantics of π calculus. The main advantage of the workflow model's formal semantic is that it allows for verification of the model's properties, such as deadlock free and normal termination. Moreover, the equivalence of workflow models can be checked through weak bisimulation theorem in the π calculus, thus facilitating the optimization of business processes.展开更多
To analyse and optimize a enterprise process in a wide scope, an activity-based method of modeling resource capabilities is presented. It models resource capabilities by means of the same structure as an activity, tha...To analyse and optimize a enterprise process in a wide scope, an activity-based method of modeling resource capabilities is presented. It models resource capabilities by means of the same structure as an activity, that is, resource capabilities are defined by input objects, actions and output objects. A set of activity-based resource capability modeling hales and matching rules between an activity and a resource are introduced. This method can not only be used to describe capability of manufacturing tools, but also capability of persons and applications, etc. It unifies methods of modeling capability of all kinds of resources in an enterprise and supports the ootimization of the resource allocation of a orocess.展开更多
The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of tra...The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of transfer process in nonideal multicomponent distillation column,a method was developed with equilibrium stage models(EQ)and non-equilibrium model(NEQ)incorporated with Maxwell-Stefan diffusion equations in the framework of AspenONE simulator.Dortmund Modified UNIFAC(UNIFAC-DMD)thermodynamic model was employed to estimate activity coefficients.In addition,to understand the reason for the diffusion against driving force and the different results by EQ and NEQ models,explicit investigations were made on diffusion coefficients, component Murphree efficiency and mass transfer coefficients.The results provide valuable information for basic design and applications associated with extractive distillation.展开更多
Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In th...Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In this paper it is followed the concept of information from philosophical to physics perspective, showing especially how this concept could be extended to matter in general and to the living in particular, as a result of the intimate interaction between matter and information, the human body appearing as a bipolar informed-matter structure. It is detailed on this way how this concept could be referred to consciousness, and an informational modeling of consciousness as an informational system of the human body is presented. Based on the anatomic architecture of the organism and on the inference of the specific information concepts, it is shown that the informational system of the human body could be described by seven informational subsystems, which are reflected in consciousness as corresponding cognitive centers. These results are able to explain the main properties of consciousness, both the cognitive and extra-cognitive properties of the mind, like that observed during the near-death experiences and other similar phenomena. Moreover, the results of such a modeling are compared with the existing empirical concepts and models on the energetic architecture of the organism, showing their relevance for the understanding of consciousness.展开更多
In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micr...In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient.展开更多
Based on the Fermi's golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate(SR) in strained Si1-x Gex/(100)Si was presented, which takes into accoun...Based on the Fermi's golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate(SR) in strained Si1-x Gex/(100)Si was presented, which takes into account a variety of scattering mechanisms,including ionized impurity, acoustic phonon, non-polar optical phonon and alloy disorder scattering. It is indicated that the SRs of acoustic phonon and non-polar optical phonon decrease under the strain, and the total SR in strained Si1-x Gex/(100)Si also decreases obviously with increasing Ge fraction(x). Moreover, the total SR continues to show a constant tendency when x is less than 0.3. In comparison with bulk Si, the total SR of strained Si1-x Gex/(100) Si decreases by about 58%.展开更多
No shale-rock physical model has been established in the observation coordinate system.To this end,this paper carried out anisotropic wave velocity tests on shale rock and compared the Thomsen,Daley,and Berryman solut...No shale-rock physical model has been established in the observation coordinate system.To this end,this paper carried out anisotropic wave velocity tests on shale rock and compared the Thomsen,Daley,and Berryman solutions to characterize anisotropic acoustic wave velocity.Finally,the Daley solution was selected.Based on basic rock physical models,such as SCA and DEM methods,and combined with the Daley solution,an anisotropic shale-rock physical model was established in the observation coordinate system and applied in Well B1 in the Luzhou area,Sichuan Basin.Our research conclusions were as follows:1.for the samples from the same core,the P-wave velocities in three directions were in the order VP11>VP45>VP33,shear wave velocity VS11 was the largest,but VS33 and VS45 did not follow the law of Vs33>Vs45 for some samples;2.the Daley solution,which not only considers the accuracy requirements but also has a complete expression of P-,SV-,and SH-waves,is most suitable for characterization of anisotropic wave velocity in this study area;3.the rock physical model constructed in the observation coordinate system has high accuracy,in which the absolute value of the relative error of the P-wave slowness was between 0%and 5.05%(0.55%on average),and that of shear-wave slowness was between 0%and 6.05%(0.59%on average);4.the acoustic waves recorded in Well B1 in the observation coordinate system were very different from those in the constitutive coordinate system.The relative difference of the P-wave was between 6.76%and 30.84%(14.68%on average),and that of the S-wave was between 7.00%and 23.44%(13.99%on average).The acoustic slowness measured in the observation coordinate system,such as in a deviated well or a horizontal well section,must be converted to the constitutive coordinate system before it can be used in subsequent engineering applications;5.the anisotropic shale-rock physical model built in the observation coordinate system proposed in this paper can provide basic data and guidance for subsequent pore pressure prediction,geomechanical modeling,and fracturing stimulation design for deviated and horizontal wells.展开更多
Trust management has been proven to be a useful technology for providing security service and as a consequence has been used in many applications such as P2P, Grid, ad hoc network and so on. However, few researches ab...Trust management has been proven to be a useful technology for providing security service and as a consequence has been used in many applications such as P2P, Grid, ad hoc network and so on. However, few researches about trust mechanism for Internet of Things (IoT) could be found in the literature, though we argue that considerable necessity is held for applying trust mechanism to IoT. In this paper, we establish a formal trust management control mechanism based on architecture modeling of IoT. We decompose the IoT into three layers, which are sensor layer, core layer and application layer, from aspects of network composition of loT. Each layer is controlled by trust management for special purpose: self-organized, affective routing and multi-service respectively. And the final decision-making is performed by service requester according to the collected trust information as well as requester' policy. Finally, we use a formal semantics-based and fuzzy set theory to realize all above trust mechanism, the result of which provides a general framework for the development of trust models of IoT.展开更多
Suction boxes are used in the paper industry to simultaneously drain a pulp suspension and form a fibre mat (or filter cake). This research addresses the modelling of fibre deposition in the forming unit of an indus...Suction boxes are used in the paper industry to simultaneously drain a pulp suspension and form a fibre mat (or filter cake). This research addresses the modelling of fibre deposition in the forming unit of an industrial papermachine, assuming a filtration process, and that of the flowing suspension drained through the building fibre mat and the wire on a suction box. From experimental data of the cumulative drained V volume, per unit surface area, for two vacuum pressures △P and 6 dwell times t, an extension of the classical law (t/V) versus V is proposed, validated and applied. This relation enables determining the average specific filtration resistance of the fibre mat over the box and the mass of solids deposited before and over the suction box. The model obtained is as precise as 1% and can be used to limit and reduce the energy consumption of drainage vacuum assisted devices such as suction boxes in the forming unit of industrial papermachines.展开更多
基金sponsored jointly by the National Natural Science Foundation of China(No.41074098)the Key State Science and Technology Project(2011ZX05023-005-005)China University of Petroleum(Beijing) Fund(KYJJ2012-05-08)
文摘Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.
文摘To facilitate system integration and evolution, modeling of complex systems requires a complementary management of system requirements and the architecture. Software tools are essential to support the above management effectively. The envisaged analysis tool for requirement and architecture management (ATRAM) is used to address the following 3 issues: (1) system requirements; (2) architecture presentation (modeling); (3) representation (marking-up) and traceability between the components of both sides. In ATRAM, a set of analysis tools is proposed. It includes a tool assisting in the generation/development of requirement documents pertaining to the architecture of composed systems, and an XML based tool for interoperability checking. It is useful for analyzing the influences of the change on enterprise system requirements or the architecture.
基金supported by the NSFC and Sinopec Joint Key Project(No.U1663207)National Science and Technology Major Project(No.2017ZX05049-002)National 973 Program(No.2014CB239104)
文摘The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the self- consistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BL Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312101) and the National Natural Science Foundation of China (No. 60475013)
文摘Realistic modeling and rendering of dynamic tornado scene is recognized as a challenging task for researchers of computer graphics. In this paper a new physically based method for simulating and animating tornado scene is presented. We first propose a Two-Fluid model based on the physical theory of tornado, then we simulate the flow of tornado and its interaction with surrounding objects such as debris, etc. Taking the scattering and absorption of light by the participating media into account, the illumination effects of the tornado scene can be generated realistically. With the support of graphics hardware, various kinds of dynamic tornado scenes can be rendered at interactive rates.
基金financial supports from the National Natural Science Foundation of China (No. 51704126)the Natural Science Foundation of Jiangsu Province, China (No. BK20170551)Jiangsu Planned Projects for Postdoctoral Research Funds, China (No. 2019K046)。
文摘The full alumina dissolution process in aluminum electrolysis cells was investigated using an improved computational fluid dynamics(CFD)model based on the previous researches by consideration of agglomerate formation.The results show that the total mass of alumina agglomerate and its maximum size are mainly dependent on the feeding amount and increase with increasing it.Higher superheat can effectively inhibit the agglomerate formation and thus promote the full alumina dissolution behavior.The full alumina dissolution process mainly includes a fast stage and a slow stage,with an average dissolution rate of 17.24 kg/min and 1.53 kg/min,respectively.About 50%(mass percentage)of the total alumina particles,almost all of which are the well-dispersed alumina fine grains,dissolve within the fast dissolution stage of about 10 s.The maximum values of the average dissolution rate and final percentage of the cumulative dissolved alumina mass are obtained with a feeding amount of 1.8 kg for a superheat of 12℃.The formation of the alumina agglomerates and slow dissolution characteristics play a dominant role in the full dissolution of alumina particles.
基金Project(2010CB328101) supported by the National Basic Research Program of ChinaProject(2009AA01Z401) supported by the National High Technology Research and Development Program of China+4 种基金Projects(60803032,90818023) supported by the National Natural Science Foundation of ChinaProjects(09510701300,09JC1414200,09DZ1120403) supported by the Shanghai Science and Technology Commission,China"Shu Guang" Project(10SG23) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,ChinaProject(09QA1405800) supported by Shanghai Science and Technology Commission Rising-Star Program,ChinaProject(NCET-10-0598) supported by Program for New Century Excellent Talents in Chinese University
文摘A novel layered method was proposed to solve the problem of Web services composition.In this method,services composition problem was formally transformed into the optimal matching problem of every layer,then optimal matching problem was modeled based on the hypergraph theory,and solved by computing the minimal transversals of the hypergraph.Meanwhile,two optimization algorithms were designed to discard some useless states at the intermediary steps of the composition algorithm.The effectiveness of the composition method was tested by a set of experiments,in addition,an example regarding the travel services composition was also given.The experimental results show that this method not only can automatically generate composition tree whose leaf nodes correspond to services composition solutions,but also has better performance on execution time and solution quality by adopting two proposed optimization algorithms.
文摘In order to speed up and simplify the design of the quadrotor unmanned aerial vehicle(UAV)and carry out experimental simulation and verification of relevant control algorithms,this paper analyzed the system dynamics model of the mechanical structure and flight principle of the quadrotor aircraft,and used the Newton-Euler method to derive the non-linear dynamic equations.Aiming at improving the modeling accuracy and system integrity of the quadrotor,the physical system modeling was combined with the CAD software and the Matlab/Simscape toolbox.The three-dimensional quadrotor solid model built by CAD software was imported into the Simscape simulation platform to construct the body and power system model of the quadrotor.Based on this,the control algorithm designed by Simulink was added to the simulation platform to facilitate the experiment verification and parameter tuning.The simulation results show that the designed aircraft can achieve hover and tracking well and meet the control performance requirements of the system.
基金Projects(41502283,41772309)supported by the National Natural Science Foundation of ChinaProject(2017YFC1501302)supported by the National Key Research and Development Program of ChinaProject(2017ACA102)supported by the Major Program of Technological Innovation of Hubei Province,China。
文摘In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indicate that the evolutions of wave velocities became progressively anisotropic under uniaxial loading due to the direction-dependent development of micro-damage.A wave velocity model considering the inner anisotropic crack evolution is proposed to accurately describe the variations of wave velocities during uniaxial compression testing.Based on which,the effective elastic parameters are inferred by a transverse isotropic constitutive model,and the evolutions of the crack density are inversed using a self-consistent damage model.It is found that the propagation of axial cracks dominates the failure process of brittle rock under uniaxial loading and oblique shear cracks develop with the appearance of macrocrack.
基金support of the studies is from the National Major Scientific and Technological Special Project for "Development and comprehensive verification of complete products of open high-end CNC system, servo device and motor" (2012ZX04001012)
文摘Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.
基金supported in part by National Science Foundation for Distinguished Young Scholars of China with Grant number 61325004Major Program of National Natural Science Foundation of Hubei in China with Grant number 2016CFA009+2 种基金the Fundamental Research Funds for the Central Universities with Grant number 2015ZDTD012the National Natural Science Foundation of China under Grant No.61463035the Research Foundation of the Education Department of Jiangxi Province under Grant No.GJJ150198
文摘In this paper, a free-space vortex channel model of the radio vortex system is proposed to describe the propagation characteristics of vortex signals over the vortex channel. The key idea is to combine the Laguerre-Gaussian(LG) modes in the optical field with the free-space propagation model in the radio field. The proposed free-space vortex channel model is derived from the electric field expression of the LG modes and the freespace channel transfer function of the freespace propagation model theoretically. Simulation results verify that the proposed model could reflect the vortex channel characteristics better than the currently used free-space propagation model.
文摘As a variant of process algebra, π calculus can describe the interactions between evolving processes. By modeling activity as a process interacting with other processes through ports, this paper presents a new approach: representing workflow models using π calculus. As a result, the model can characterize the dynamic behaviors of the workflow process in terms of the LTS (Labeled Transition Semantics) semantics of π calculus. The main advantage of the workflow model's formal semantic is that it allows for verification of the model's properties, such as deadlock free and normal termination. Moreover, the equivalence of workflow models can be checked through weak bisimulation theorem in the π calculus, thus facilitating the optimization of business processes.
基金the Natural High-Technology Development Program for CIMS of China(Grant No.2003AA413210)
文摘To analyse and optimize a enterprise process in a wide scope, an activity-based method of modeling resource capabilities is presented. It models resource capabilities by means of the same structure as an activity, that is, resource capabilities are defined by input objects, actions and output objects. A set of activity-based resource capability modeling hales and matching rules between an activity and a resource are introduced. This method can not only be used to describe capability of manufacturing tools, but also capability of persons and applications, etc. It unifies methods of modeling capability of all kinds of resources in an enterprise and supports the ootimization of the resource allocation of a orocess.
基金Supported by the National Natural Science Foundation of China (20776118), Science & Technology Bureau of Xi'an [CXY09019 (1)], Innovation Foundation for Graduated Student of Northwest University (08YJC21), Shaanxi Research Center of Engineering Technology for Clean Coal Conversion (2008ZDGC-13).
文摘The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of transfer process in nonideal multicomponent distillation column,a method was developed with equilibrium stage models(EQ)and non-equilibrium model(NEQ)incorporated with Maxwell-Stefan diffusion equations in the framework of AspenONE simulator.Dortmund Modified UNIFAC(UNIFAC-DMD)thermodynamic model was employed to estimate activity coefficients.In addition,to understand the reason for the diffusion against driving force and the different results by EQ and NEQ models,explicit investigations were made on diffusion coefficients, component Murphree efficiency and mass transfer coefficients.The results provide valuable information for basic design and applications associated with extractive distillation.
文摘Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In this paper it is followed the concept of information from philosophical to physics perspective, showing especially how this concept could be extended to matter in general and to the living in particular, as a result of the intimate interaction between matter and information, the human body appearing as a bipolar informed-matter structure. It is detailed on this way how this concept could be referred to consciousness, and an informational modeling of consciousness as an informational system of the human body is presented. Based on the anatomic architecture of the organism and on the inference of the specific information concepts, it is shown that the informational system of the human body could be described by seven informational subsystems, which are reflected in consciousness as corresponding cognitive centers. These results are able to explain the main properties of consciousness, both the cognitive and extra-cognitive properties of the mind, like that observed during the near-death experiences and other similar phenomena. Moreover, the results of such a modeling are compared with the existing empirical concepts and models on the energetic architecture of the organism, showing their relevance for the understanding of consciousness.
基金Projects(50975092,50805052,U0834002) supported by the National Natural Science Foundation of ChinaProject(9151030101000007) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2009ZZ0041) supported by the Fundamental Research Funds for the Central Universities in China
文摘In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient.
基金Project(JY0300122503)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(P140c090303110c0904)supported by NLAIC Research Fund,ChinaProjects(K5051225014,7214608503)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the Fermi's golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate(SR) in strained Si1-x Gex/(100)Si was presented, which takes into account a variety of scattering mechanisms,including ionized impurity, acoustic phonon, non-polar optical phonon and alloy disorder scattering. It is indicated that the SRs of acoustic phonon and non-polar optical phonon decrease under the strain, and the total SR in strained Si1-x Gex/(100)Si also decreases obviously with increasing Ge fraction(x). Moreover, the total SR continues to show a constant tendency when x is less than 0.3. In comparison with bulk Si, the total SR of strained Si1-x Gex/(100) Si decreases by about 58%.
基金supported by the Post Doctoral Project of Southwest Oil and Gas Field Research on Geomechanics and Effective Fracturing Factors of Deep Shale” (No. 20210302-31)the Scientific Research Project of Southwest Oil and Gas Field Branch “Geological Engineering Integration of Well Block Yang101”。
文摘No shale-rock physical model has been established in the observation coordinate system.To this end,this paper carried out anisotropic wave velocity tests on shale rock and compared the Thomsen,Daley,and Berryman solutions to characterize anisotropic acoustic wave velocity.Finally,the Daley solution was selected.Based on basic rock physical models,such as SCA and DEM methods,and combined with the Daley solution,an anisotropic shale-rock physical model was established in the observation coordinate system and applied in Well B1 in the Luzhou area,Sichuan Basin.Our research conclusions were as follows:1.for the samples from the same core,the P-wave velocities in three directions were in the order VP11>VP45>VP33,shear wave velocity VS11 was the largest,but VS33 and VS45 did not follow the law of Vs33>Vs45 for some samples;2.the Daley solution,which not only considers the accuracy requirements but also has a complete expression of P-,SV-,and SH-waves,is most suitable for characterization of anisotropic wave velocity in this study area;3.the rock physical model constructed in the observation coordinate system has high accuracy,in which the absolute value of the relative error of the P-wave slowness was between 0%and 5.05%(0.55%on average),and that of shear-wave slowness was between 0%and 6.05%(0.59%on average);4.the acoustic waves recorded in Well B1 in the observation coordinate system were very different from those in the constitutive coordinate system.The relative difference of the P-wave was between 6.76%and 30.84%(14.68%on average),and that of the S-wave was between 7.00%and 23.44%(13.99%on average).The acoustic slowness measured in the observation coordinate system,such as in a deviated well or a horizontal well section,must be converted to the constitutive coordinate system before it can be used in subsequent engineering applications;5.the anisotropic shale-rock physical model built in the observation coordinate system proposed in this paper can provide basic data and guidance for subsequent pore pressure prediction,geomechanical modeling,and fracturing stimulation design for deviated and horizontal wells.
文摘Trust management has been proven to be a useful technology for providing security service and as a consequence has been used in many applications such as P2P, Grid, ad hoc network and so on. However, few researches about trust mechanism for Internet of Things (IoT) could be found in the literature, though we argue that considerable necessity is held for applying trust mechanism to IoT. In this paper, we establish a formal trust management control mechanism based on architecture modeling of IoT. We decompose the IoT into three layers, which are sensor layer, core layer and application layer, from aspects of network composition of loT. Each layer is controlled by trust management for special purpose: self-organized, affective routing and multi-service respectively. And the final decision-making is performed by service requester according to the collected trust information as well as requester' policy. Finally, we use a formal semantics-based and fuzzy set theory to realize all above trust mechanism, the result of which provides a general framework for the development of trust models of IoT.
文摘Suction boxes are used in the paper industry to simultaneously drain a pulp suspension and form a fibre mat (or filter cake). This research addresses the modelling of fibre deposition in the forming unit of an industrial papermachine, assuming a filtration process, and that of the flowing suspension drained through the building fibre mat and the wire on a suction box. From experimental data of the cumulative drained V volume, per unit surface area, for two vacuum pressures △P and 6 dwell times t, an extension of the classical law (t/V) versus V is proposed, validated and applied. This relation enables determining the average specific filtration resistance of the fibre mat over the box and the mass of solids deposited before and over the suction box. The model obtained is as precise as 1% and can be used to limit and reduce the energy consumption of drainage vacuum assisted devices such as suction boxes in the forming unit of industrial papermachines.