It is imperative to evaluate factor of safety against basal heave failure in the design of braced deep excavation in soft clay.Based on previously published field monitoring data and finite element analyses of ground ...It is imperative to evaluate factor of safety against basal heave failure in the design of braced deep excavation in soft clay.Based on previously published field monitoring data and finite element analyses of ground settlements of deep excavation in soft clay,an assumed plastic deformation mechanism proposed here gives upper bound solutions for base stability of braced deep excavations.The proposed kinematic mechanism is optimized by the mobile depth(profile wavelength).The method takes into account the influence of strength anisotropy under plane strain conditions,the embedment of the retaining wall,and the locations of the struts.The current method is validated by comparison with published numerical study of braced excavations in Boston blue clay and two other cases of excavation failure in Taipei.The results show that the upper bound solutions obtained from this presented method is more accurate as compared with the conventional methods for basal heave failure analyses.展开更多
According to a program of Braverman, Kazhdan and NgS, for a large class of split unramified reductive groups G and representations p of the dual group G, the unramified local L-factor L(s, π, ρ) can be expressed a...According to a program of Braverman, Kazhdan and NgS, for a large class of split unramified reductive groups G and representations p of the dual group G, the unramified local L-factor L(s, π, ρ) can be expressed as the trace of π(fρ,s) for a function fρ,s with non-compact support whenever Re(s) ≥ 0. Such a function should have useful interpretations in terms of geometry or eombinatories, and it can be plugged into the trace formula to study certain sums of automorphic L-functions. It also fits into the conjectural framework of Schwartz spaces for reductive monoids due to Sakellaridis, who coined the term basic functions; this is supposed to lead to a generalized Tamagawa-Godement-Jaequet theory for (G, ρ). In this paper, we derive some basic properties for the basic functions fρ,s and interpret them via invariant theory. In particular, their coefficients are interpreted as certain generalized Kostka-Foulkes polynomials defined by Panyushev. These coefficients can be encoded into a rational generating function.展开更多
In this paper,we report a high-performance selfsupported supercapacitor electrode composed of a cracked bark-shaped Ni-Co-Mn ternary metallic sulfide(NiCoMnS4)nanostructure on carbon cloth prepared by a simple one-ste...In this paper,we report a high-performance selfsupported supercapacitor electrode composed of a cracked bark-shaped Ni-Co-Mn ternary metallic sulfide(NiCoMnS4)nanostructure on carbon cloth prepared by a simple one-step hydrothermal process and subsequent electrochemical treatment.The electrode delivers a high specific discharge capacity of up to 2470.4 F g^(-1) at 1 A g^(-1) and high rate performances of1635.6 F g^(-1) at 10 A g^(-1) and 910.2 F g^(-1) even at 32 A g^(-1).Cycling tests indicate that NiCoMnS_(4) could maintain >91.1% of its initial capacity and nearly 100% Coulombic efficiency over10,000 cycles at 8 A g^(-1).An aqueous asymmetric supercapacitor assembled with NiCoMnS_(4) as the cathode,activated carbon as the anode,and 1 mol L^(-1) KOH as the electrolyte delivers an energy density of 68.2 W h kg^(-1)at 850.1 W kg^(-1) and capacity retention of 92.5% after 10,000 cycles at 4 A g^(-1).Given the excellent performance and simple material preparation of our proposed device,this study provides a valuable foundation for the development of self-supported metallic sulfide-based electrodes with high electrochemical properties for potential application in aqueous asymmetric supercapacitors.展开更多
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51325901)the State Key Program of National Natural Science of China(Grant No.51338009)
文摘It is imperative to evaluate factor of safety against basal heave failure in the design of braced deep excavation in soft clay.Based on previously published field monitoring data and finite element analyses of ground settlements of deep excavation in soft clay,an assumed plastic deformation mechanism proposed here gives upper bound solutions for base stability of braced deep excavations.The proposed kinematic mechanism is optimized by the mobile depth(profile wavelength).The method takes into account the influence of strength anisotropy under plane strain conditions,the embedment of the retaining wall,and the locations of the struts.The current method is validated by comparison with published numerical study of braced excavations in Boston blue clay and two other cases of excavation failure in Taipei.The results show that the upper bound solutions obtained from this presented method is more accurate as compared with the conventional methods for basal heave failure analyses.
文摘According to a program of Braverman, Kazhdan and NgS, for a large class of split unramified reductive groups G and representations p of the dual group G, the unramified local L-factor L(s, π, ρ) can be expressed as the trace of π(fρ,s) for a function fρ,s with non-compact support whenever Re(s) ≥ 0. Such a function should have useful interpretations in terms of geometry or eombinatories, and it can be plugged into the trace formula to study certain sums of automorphic L-functions. It also fits into the conjectural framework of Schwartz spaces for reductive monoids due to Sakellaridis, who coined the term basic functions; this is supposed to lead to a generalized Tamagawa-Godement-Jaequet theory for (G, ρ). In this paper, we derive some basic properties for the basic functions fρ,s and interpret them via invariant theory. In particular, their coefficients are interpreted as certain generalized Kostka-Foulkes polynomials defined by Panyushev. These coefficients can be encoded into a rational generating function.
基金supported by the National Natural Science Foundation of China(61376068,11304132,11304133 and11504147)the Fundamental Research Funds for the Central Universities(lzujbky-2017-178 and lzujbky-2017-181)。
文摘In this paper,we report a high-performance selfsupported supercapacitor electrode composed of a cracked bark-shaped Ni-Co-Mn ternary metallic sulfide(NiCoMnS4)nanostructure on carbon cloth prepared by a simple one-step hydrothermal process and subsequent electrochemical treatment.The electrode delivers a high specific discharge capacity of up to 2470.4 F g^(-1) at 1 A g^(-1) and high rate performances of1635.6 F g^(-1) at 10 A g^(-1) and 910.2 F g^(-1) even at 32 A g^(-1).Cycling tests indicate that NiCoMnS_(4) could maintain >91.1% of its initial capacity and nearly 100% Coulombic efficiency over10,000 cycles at 8 A g^(-1).An aqueous asymmetric supercapacitor assembled with NiCoMnS_(4) as the cathode,activated carbon as the anode,and 1 mol L^(-1) KOH as the electrolyte delivers an energy density of 68.2 W h kg^(-1)at 850.1 W kg^(-1) and capacity retention of 92.5% after 10,000 cycles at 4 A g^(-1).Given the excellent performance and simple material preparation of our proposed device,this study provides a valuable foundation for the development of self-supported metallic sulfide-based electrodes with high electrochemical properties for potential application in aqueous asymmetric supercapacitors.