The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite ...The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.展开更多
This paper proposes the expression of the jigging bed porosity based on the jumping height of the jigging bed and water wave. This kind of expression can help to realize the jigging process automation and intelligence...This paper proposes the expression of the jigging bed porosity based on the jumping height of the jigging bed and water wave. This kind of expression can help to realize the jigging process automation and intelligence. The computer detection system is also developed.展开更多
In recent years,power saving problem has become more and more important in many fields and attracted a lot of research interests.In this paper,the authors consider the power saving problem in the virtualized computing...In recent years,power saving problem has become more and more important in many fields and attracted a lot of research interests.In this paper,the authors consider the power saving problem in the virtualized computing system.Since there are multiple objectives in the system as well as many factors influencing the objectives,the problem is complex and hard.The authors will formulate the problem as an optimization problem of power consumption with a prior requirement on performance,which is taken as the response time in the paper.To solve the problem,the authors design the adaptive controller based on least-square self-tuning regulator to dynamically regulate the computing resource so as to track a given reasonable reference performance and then minimize the power consumption using the tracking result supplied by the controller at each time.Simulation is implemented based on the data collected from real machines and the time delay of turning on/off the machine is included in the process.The results show that this method based on adaptive control theory can save power consumption greatly with satisfying the performance requirement at the same time,thus it is suitable and effective to solve the problem.展开更多
In this paper,we study lag synchronization between two coupled networks and apply two types of control schemes,including the open-plus-closed-loop(OPCL) and adaptive controls.We then design the corresponding control a...In this paper,we study lag synchronization between two coupled networks and apply two types of control schemes,including the open-plus-closed-loop(OPCL) and adaptive controls.We then design the corresponding control algorithms according to the OPCL and adaptive feedback schemes.With the designed controllers,we obtain two theorems on the lag synchronization based on Lyapunov stability theory and Barbalat's lemma.Finally we provide numerical examples to show the effectiveness of the obtained controllers and see that the adaptive control is stronger than the OPCL control when realizing the lag synchronization between two coupled networks with different coupling structures.展开更多
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.
文摘This paper proposes the expression of the jigging bed porosity based on the jumping height of the jigging bed and water wave. This kind of expression can help to realize the jigging process automation and intelligence. The computer detection system is also developed.
基金supported by the National Natural Science Foundation of China under Grant No.61304159
文摘In recent years,power saving problem has become more and more important in many fields and attracted a lot of research interests.In this paper,the authors consider the power saving problem in the virtualized computing system.Since there are multiple objectives in the system as well as many factors influencing the objectives,the problem is complex and hard.The authors will formulate the problem as an optimization problem of power consumption with a prior requirement on performance,which is taken as the response time in the paper.To solve the problem,the authors design the adaptive controller based on least-square self-tuning regulator to dynamically regulate the computing resource so as to track a given reasonable reference performance and then minimize the power consumption using the tracking result supplied by the controller at each time.Simulation is implemented based on the data collected from real machines and the time delay of turning on/off the machine is included in the process.The results show that this method based on adaptive control theory can save power consumption greatly with satisfying the performance requirement at the same time,thus it is suitable and effective to solve the problem.
基金Supported by the National Natural Science Foundation of China under Grant No.61304173Foundation of Liaoning Educational Committee(No.13-1069)and Hangzhou Polytechnic(No.KZYZ-2009-2)
文摘In this paper,we study lag synchronization between two coupled networks and apply two types of control schemes,including the open-plus-closed-loop(OPCL) and adaptive controls.We then design the corresponding control algorithms according to the OPCL and adaptive feedback schemes.With the designed controllers,we obtain two theorems on the lag synchronization based on Lyapunov stability theory and Barbalat's lemma.Finally we provide numerical examples to show the effectiveness of the obtained controllers and see that the adaptive control is stronger than the OPCL control when realizing the lag synchronization between two coupled networks with different coupling structures.