Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a pro...Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non- precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH na- noarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive elec- trode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm-2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be ea- sily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance.展开更多
In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel ada...In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.展开更多
基金supported by the National Natural Science Foundation of China,National Key Research and Development Project (2016YFC0801302, 2016YFF0204402)the Program for Changjiang Scholars and Innovative Research Team in the University+2 种基金the Fundamental Research Funds for the Central Universitiesthe longterm subsidy mechanism from the Ministry of Financethe Ministry of Education of China
文摘Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non- precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH na- noarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive elec- trode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm-2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be ea- sily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.61304193&U1564208)National Key R&D Program of China(Grant No.2016YFB0100900)
文摘In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.