Inter-tidal(subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al.(2008), an updated Lagrangian inter-tidal transport equation, as w...Inter-tidal(subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al.(2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian in- ter-tidal concentration(LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is nu- merically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as ‘flat-bottom', ‘stairs' and ‘cape' case, re- spectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the ‘flat-bottom' case still meets the convectively weakly nonlinear condi- tion. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the de- pendence of the LIS(Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coast- lines, and that in the latter region is due to the presence of the estuarine salinity front.展开更多
基金supported by National Basic Research Program of China (No. 2010CB428904)National Science Foundation of China (Nos. 41106006, 40976003)
文摘Inter-tidal(subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al.(2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian in- ter-tidal concentration(LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is nu- merically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as ‘flat-bottom', ‘stairs' and ‘cape' case, re- spectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the ‘flat-bottom' case still meets the convectively weakly nonlinear condi- tion. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the de- pendence of the LIS(Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coast- lines, and that in the latter region is due to the presence of the estuarine salinity front.