The relation between earthquakes and active faults in Shanghai and its adjacent offshore region is quantitatively evaluated using GIS-based buffer and overlay analysis techniques. Statistics on the distance from the e...The relation between earthquakes and active faults in Shanghai and its adjacent offshore region is quantitatively evaluated using GIS-based buffer and overlay analysis techniques. Statistics on the distance from the epicenter of an earthquake to its nearest active fault suggest that most earthquakes in the study area occurred within 10 to 20 km of major active faults. The strikes of active faults have significant influences on the occurrence of earthquakes. The NE-NNE-striked faults are less active than NW-NNW- or EW-striked faults. Along the NW-NNW- or EW-striked faults, the frequency of earthquakes is much higher than that along NE-NNE-striked faults. The time of fault activity has some degree of influence on the earthquakes. The newer the faults, the higher the frequency of earthquakes within the zone of the faults.展开更多
Land use and land cover(LULC) in Nepal has undergone constant change over the past few decades due to major changes caused by anthropogenic and natural factors and their impacts on the national and regional environmen...Land use and land cover(LULC) in Nepal has undergone constant change over the past few decades due to major changes caused by anthropogenic and natural factors and their impacts on the national and regional environment and climate.This comprehensive review of past and present studies of land use and land cover change(LUCC) in Nepal concentrates on cropland, grassland, forest, snow/glacier cover and urban areas. While most small area studies have gathered data from different sources and research over a short period, across large areas most historical studies have been based on aerial photographs such as the Land Resource Mapping Project in 1986. The recent trend in studies in Nepal is to focus on new concepts and techniques to analyze LULC status on the basis of satellite imagery, with the help of geographic information system and remote sensing tools. Studies based on historical documents, and historical and recent spatial data on LULC, have clearly shown an increase in cropland areas in Nepal,and present results indicating different rates and magnitudes. A decrease in forest and snow/glacier coverage is reported in most studies. Little information is available on grassland and urban areas from past research. The unprecedented rate of urbanization in Nepal has led to significant urban land changes over the past 30 years. Meanwhile, long term historical LUCC research in Nepal is required for extensive work on spatially explicit reconstructions on the basis of historical and primary data collection, including LULC archives and drivers for future change.展开更多
The graph overlay method is used to evaluate the noise impact of route alignment and the results can serve as a reference for the route alignment optimal selection. The geographic information system(GIS), with its pow...The graph overlay method is used to evaluate the noise impact of route alignment and the results can serve as a reference for the route alignment optimal selection. The geographic information system(GIS), with its powerful function of handling attribute data and spatial analysis, is adopted to calculate the noise comprehensive impact area of each alignment. With the graph overlay method, the noise vulnerability and noise impact distribution are both taken into account in the noise impact assessment of route alignment. With GIS, the efficiency of work and the reliability of result are greatly improved. By a combination of them, the noise impact on environment is fully presented in a visual way and the assessment result has vital value in route alignment optimal selection. A detailed case study is illustrated and the efficiency of the method is verified.展开更多
The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai Xizang(Tibet)Plateau of China. The melt water from the snow cover is main water supply for the rivers in the region during springtime a...The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai Xizang(Tibet)Plateau of China. The melt water from the snow cover is main water supply for the rivers in the region during springtime and other arid regions of the northwestern China, and the hydrological conditions of the rivers are directly controlled by the snowmelt water in spring. So snowmelt runoff forecast has importance for hydropower, flood prevention and water resources utilization. The application of remote sensing and Geographic Information System (GIS) techniques in snow cover monitoring and snowmelt runoff calculation in the upper Huanghe River basin are introduced amply in this paper. The key parameter-snow cover area can be computed by satellite images from multi platform, multi temporal and multi spectral. A cluster of snow cover data can be yielded by means of the classification filter method. Meanwhile GIS will provide relevant information for obtaining the parameters and also for zoning. According to the typical samples extracting snow covered mountainous region, the snowmelt runoff calculation models in the upper Huanghe River basin are presented and they are mentioned in detail also. The runoff snowmelt models based on the snow cover data from NOAA images and observation data of runoff, precipitation and air temperature have been satisfactorily used for predicting the inflow to the Longyangxia Reservoir , which is located at lower end of snow cover region and is one of the largest reservoirs on the upper Huanghe River, during late March to early June. The result shows that remote sensing techniques combined with the ground meteorological and hydrological observation is of great potential in snowmelt runoff forecasting for a large river basin. With the development of remote sensing technique and the progress of the interpretation method, the forecast accuracy of snowmelt runoff will be improved in the near future. Large scale extent and few stations are two objective reality situations in China, so they should be considered in simulation and forecast. Apart from dividing, the derivation of snow cover area from satellite images would decide the results of calculating runoff. Field investigation for selection of the learning samples of different snow patterns is basis for the classification.展开更多
The subsiding land can be extracted from Remote Sensing image based on itsspectral and spatial features. The features of subsiding land caused by raining, especially its RSinformation features and relative knowledge a...The subsiding land can be extracted from Remote Sensing image based on itsspectral and spatial features. The features of subsiding land caused by raining, especially its RSinformation features and relative knowledge are proposed. Three methods can be used to extractsubsiding land from RS image. The first is to categorize the region into different blocks (orlayers) according to their features and apply corresponding strategies for each block, the second isto identify the changeable region based on GIS firstly and then to classify those regions, and thethird is to post-process the classified image by traditional methods or ANN (Artificial NeuralNetwork) methods based on domain knowledge and GIS. Two direct extraction methods are introducedalso. One is the extraction based on the water accumulating property of subsiding land, and theother is based on the dynamic change of land cover in subsiding land.展开更多
Schistosomiasis is a serious public health problem in the middle-lower Yangtze River Basin in China. Study of spatial variation of snail distribution that is related to microgeographic factors can help to choose perti...Schistosomiasis is a serious public health problem in the middle-lower Yangtze River Basin in China. Study of spatial variation of snail distribution that is related to microgeographic factors can help to choose pertinent measures for snail extinguishment and environment rebuilding. This paper studied the theoretical architecture of weights-of-evidence approach. The case study was made for spatial relation between the occurrence of infected snails and geographic factor combinations in Waijiazhou marshland of Poyang Lake region in China. The multievidence data came from the geographical factor combinations by crossing operation of vegetation coverage grade layer, cattle route distance grade layer, and special environment layer (181 combinations in total) in GIS. The calculation of weight contrast index shows that high vegetation coverage, cattle route distance of <45 meters, and special geographic factor "ground depression" had direct spatial relation with the occurrence of infected snails. The verification by crossing operation in GIS indicated 72.45% of the infected snails concentrated on the areas of positive weight contrast index (sequenced in an order of weight contrast index from high to low), demonstrating the high efficiency of the model established in finding infected snails according to the geographic factor combinations that can be explicitly discerned in the study area.展开更多
In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) a...In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) are integrated to monitor, map, and quantify the land use/cover change in the southern part of Iraq (Basrah Province was taken as a case) by using a 1:250 000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation, sand, urban area, unused land, and water bodies. Supervised classification and normalized difference build-up index (NDBI) were used respectively to retrieve its urban boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. Results showed that the urban area had increased by the rate of 1.2% per year, with area expansion from 3 299.1 km2 in 1990 to 3 794.9 km2 in 2003. Large vegetation area in the north and southeast were converted into urban construction land. The land use/cover changes of Basrah Province were mainly caused by rapid development of the urban economy and population immigration from the countryside. In addition, the former government policy of "returning farmland to transportation and huge expansion in military camps" was the major driving force for vegetation land change. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time.展开更多
文摘The relation between earthquakes and active faults in Shanghai and its adjacent offshore region is quantitatively evaluated using GIS-based buffer and overlay analysis techniques. Statistics on the distance from the epicenter of an earthquake to its nearest active fault suggest that most earthquakes in the study area occurred within 10 to 20 km of major active faults. The strikes of active faults have significant influences on the occurrence of earthquakes. The NE-NNE-striked faults are less active than NW-NNW- or EW-striked faults. Along the NW-NNW- or EW-striked faults, the frequency of earthquakes is much higher than that along NE-NNE-striked faults. The time of fault activity has some degree of influence on the earthquakes. The newer the faults, the higher the frequency of earthquakes within the zone of the faults.
基金supported by the Natural Science Foundation of China(Grant No.41371120)the Koshi Basin Programme(Support from the Australian Government through the Department of Foreign Affairs and Trade(DFAT))the Chinese Academy of Sciences-The World Academy of Sciences(CAS-TWAS)President’s Fellowship Programme for international PhD students
文摘Land use and land cover(LULC) in Nepal has undergone constant change over the past few decades due to major changes caused by anthropogenic and natural factors and their impacts on the national and regional environment and climate.This comprehensive review of past and present studies of land use and land cover change(LUCC) in Nepal concentrates on cropland, grassland, forest, snow/glacier cover and urban areas. While most small area studies have gathered data from different sources and research over a short period, across large areas most historical studies have been based on aerial photographs such as the Land Resource Mapping Project in 1986. The recent trend in studies in Nepal is to focus on new concepts and techniques to analyze LULC status on the basis of satellite imagery, with the help of geographic information system and remote sensing tools. Studies based on historical documents, and historical and recent spatial data on LULC, have clearly shown an increase in cropland areas in Nepal,and present results indicating different rates and magnitudes. A decrease in forest and snow/glacier coverage is reported in most studies. Little information is available on grassland and urban areas from past research. The unprecedented rate of urbanization in Nepal has led to significant urban land changes over the past 30 years. Meanwhile, long term historical LUCC research in Nepal is required for extensive work on spatially explicit reconstructions on the basis of historical and primary data collection, including LULC archives and drivers for future change.
基金Project (2004036125) supported by Postdoctoral Science Foundation of China project(2002F008 2003F012) supportedby the Science and Technology Research and Development Planning Projects of the Ministry of Railway of China
文摘The graph overlay method is used to evaluate the noise impact of route alignment and the results can serve as a reference for the route alignment optimal selection. The geographic information system(GIS), with its powerful function of handling attribute data and spatial analysis, is adopted to calculate the noise comprehensive impact area of each alignment. With the graph overlay method, the noise vulnerability and noise impact distribution are both taken into account in the noise impact assessment of route alignment. With GIS, the efficiency of work and the reliability of result are greatly improved. By a combination of them, the noise impact on environment is fully presented in a visual way and the assessment result has vital value in route alignment optimal selection. A detailed case study is illustrated and the efficiency of the method is verified.
文摘The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai Xizang(Tibet)Plateau of China. The melt water from the snow cover is main water supply for the rivers in the region during springtime and other arid regions of the northwestern China, and the hydrological conditions of the rivers are directly controlled by the snowmelt water in spring. So snowmelt runoff forecast has importance for hydropower, flood prevention and water resources utilization. The application of remote sensing and Geographic Information System (GIS) techniques in snow cover monitoring and snowmelt runoff calculation in the upper Huanghe River basin are introduced amply in this paper. The key parameter-snow cover area can be computed by satellite images from multi platform, multi temporal and multi spectral. A cluster of snow cover data can be yielded by means of the classification filter method. Meanwhile GIS will provide relevant information for obtaining the parameters and also for zoning. According to the typical samples extracting snow covered mountainous region, the snowmelt runoff calculation models in the upper Huanghe River basin are presented and they are mentioned in detail also. The runoff snowmelt models based on the snow cover data from NOAA images and observation data of runoff, precipitation and air temperature have been satisfactorily used for predicting the inflow to the Longyangxia Reservoir , which is located at lower end of snow cover region and is one of the largest reservoirs on the upper Huanghe River, during late March to early June. The result shows that remote sensing techniques combined with the ground meteorological and hydrological observation is of great potential in snowmelt runoff forecasting for a large river basin. With the development of remote sensing technique and the progress of the interpretation method, the forecast accuracy of snowmelt runoff will be improved in the near future. Large scale extent and few stations are two objective reality situations in China, so they should be considered in simulation and forecast. Apart from dividing, the derivation of snow cover area from satellite images would decide the results of calculating runoff. Field investigation for selection of the learning samples of different snow patterns is basis for the classification.
基金Under the auspices of the Research Foundation of Doctoral Point of China(No.RFDP20010290006).
文摘The subsiding land can be extracted from Remote Sensing image based on itsspectral and spatial features. The features of subsiding land caused by raining, especially its RSinformation features and relative knowledge are proposed. Three methods can be used to extractsubsiding land from RS image. The first is to categorize the region into different blocks (orlayers) according to their features and apply corresponding strategies for each block, the second isto identify the changeable region based on GIS firstly and then to classify those regions, and thethird is to post-process the classified image by traditional methods or ANN (Artificial NeuralNetwork) methods based on domain knowledge and GIS. Two direct extraction methods are introducedalso. One is the extraction based on the water accumulating property of subsiding land, and theother is based on the dynamic change of land cover in subsiding land.
基金Supported by a the National Natural Science Fundation of China (No. 30590370)the Research Project "Spatial Simulation of Schistosomiasis Susceptible Areas in the Poyang Lake Region" Sponsored by Science Research Plan 2007 of Jiangxi Normal University (Natural Science Category)
文摘Schistosomiasis is a serious public health problem in the middle-lower Yangtze River Basin in China. Study of spatial variation of snail distribution that is related to microgeographic factors can help to choose pertinent measures for snail extinguishment and environment rebuilding. This paper studied the theoretical architecture of weights-of-evidence approach. The case study was made for spatial relation between the occurrence of infected snails and geographic factor combinations in Waijiazhou marshland of Poyang Lake region in China. The multievidence data came from the geographical factor combinations by crossing operation of vegetation coverage grade layer, cattle route distance grade layer, and special environment layer (181 combinations in total) in GIS. The calculation of weight contrast index shows that high vegetation coverage, cattle route distance of <45 meters, and special geographic factor "ground depression" had direct spatial relation with the occurrence of infected snails. The verification by crossing operation in GIS indicated 72.45% of the infected snails concentrated on the areas of positive weight contrast index (sequenced in an order of weight contrast index from high to low), demonstrating the high efficiency of the model established in finding infected snails according to the geographic factor combinations that can be explicitly discerned in the study area.
基金Supported by the Al-Basrah University, Iraq, the Geo-information Science and Technology Program ( No IRT 0438)China)
文摘In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) are integrated to monitor, map, and quantify the land use/cover change in the southern part of Iraq (Basrah Province was taken as a case) by using a 1:250 000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation, sand, urban area, unused land, and water bodies. Supervised classification and normalized difference build-up index (NDBI) were used respectively to retrieve its urban boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. Results showed that the urban area had increased by the rate of 1.2% per year, with area expansion from 3 299.1 km2 in 1990 to 3 794.9 km2 in 2003. Large vegetation area in the north and southeast were converted into urban construction land. The land use/cover changes of Basrah Province were mainly caused by rapid development of the urban economy and population immigration from the countryside. In addition, the former government policy of "returning farmland to transportation and huge expansion in military camps" was the major driving force for vegetation land change. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time.