Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3P...Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.展开更多
Magnetic topological quantum materials(TQMs) provide a fertile ground for the emergence of fascinating topological magneto-electric effects. Recently, the discovery of intrinsic antiferromagnetic(AFM) topological insu...Magnetic topological quantum materials(TQMs) provide a fertile ground for the emergence of fascinating topological magneto-electric effects. Recently, the discovery of intrinsic antiferromagnetic(AFM) topological insulator MnBi_(2)Te_(4) that could realize quantized anomalous Hall effect and axion insulator phase ignited intensive study on this family of TQM compounds. Here, we investigated the AFM compound Mn Bi4 Te7 where Bi_(2)Te_(3) and MnBi_(2)Te_(4) layers alternate to form a superlattice. Using spatial-and angleresolved photoemission spectroscopy, we identified ubiquitous(albeit termination dependent) topological electronic structures from both Bi_(2)Te_(3) and MnBi_(2)Te_(4) terminations. Unexpectedly, while the bulk bands show strong temperature dependence correlated with the AFM transition, the topological surface states with a diminishing gap show negligible temperature dependence across the AFM transition.Together with the results of its sister compound MnBi_(2)Te_(4), we illustrate important aspects of electronic structures and the effect of magnetic ordering in this family of magnetic TQMs.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.10774039).
文摘Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.
基金supported by the National Key Research and Development Program of China (2017YFA0305400, 2017YFA0304600, 2018YFA0307100, and 2018YFA0305603)the National Natural Science Foundation of China (11774190, 11674229, 11634009, 11774427, 51788104, and 11874035)+1 种基金EPSRC Platform Grant (EP/M020517/1)the support from the Shanghai Pujiang Program (17PJ1406200)。
文摘Magnetic topological quantum materials(TQMs) provide a fertile ground for the emergence of fascinating topological magneto-electric effects. Recently, the discovery of intrinsic antiferromagnetic(AFM) topological insulator MnBi_(2)Te_(4) that could realize quantized anomalous Hall effect and axion insulator phase ignited intensive study on this family of TQM compounds. Here, we investigated the AFM compound Mn Bi4 Te7 where Bi_(2)Te_(3) and MnBi_(2)Te_(4) layers alternate to form a superlattice. Using spatial-and angleresolved photoemission spectroscopy, we identified ubiquitous(albeit termination dependent) topological electronic structures from both Bi_(2)Te_(3) and MnBi_(2)Te_(4) terminations. Unexpectedly, while the bulk bands show strong temperature dependence correlated with the AFM transition, the topological surface states with a diminishing gap show negligible temperature dependence across the AFM transition.Together with the results of its sister compound MnBi_(2)Te_(4), we illustrate important aspects of electronic structures and the effect of magnetic ordering in this family of magnetic TQMs.