Using the digital telemetric seismic waveform data of Chengdu and Kunming, this article studies the focal mechanism solutions and the apparent stress values of a large number of small earthquakes, and then analyzes th...Using the digital telemetric seismic waveform data of Chengdu and Kunming, this article studies the focal mechanism solutions and the apparent stress values of a large number of small earthquakes, and then analyzes the dynamic variation of regional stress fields and the spatio- temporal distribution of apparent stress values. The annual variation values of the azimuth of average principal stress field before the May 12, 2008 Ms8.0 Wenchuan earthquake in the Sichuan-Yunnan region were 58° from 2003 to 2004, 85° from 2003 to 2005,61° from 2006 to 2007 and 90° from 2006 to April 2008 respectively. In recent years, deflection or disturbances occurred in the azimuth of the average principal stress field in the Sichuan-Yunnan region. Analysis shows that this may be related to the change of stress field states of crustal blocks before and after the December 26, 2004 Ms9.0 Sumatra earthquake and the 2008 Ms8.0 Wenchuan earthquake. The ratio of thrust-type earthquakes in the Sichnan-Qinghai block was on the higher side in the period from 2006 to 2007, and the source faulting type of the regional moderate and small earthquakes had changed before the Ms8.0 Wenchnan earthquake. The change of state of the stress field is consistent with the changes in block displacement fields revealed by GPS data and the crustal shortening velocity vertical to the Longmenshan fault zone. Based on the radiation energy calculated from all bands of the seismic waveform, the value of apparent stress σapp is obtained. The fluctuation shape of the fitting trend of the apparent stress is related to the intensity of regional seismicity. It reveals that the micro- dynamic fluctuation process of the regional stress value is similar to the azimuth transition of the regional principal compressive stress field, which can be used to probe for pregnant physical processes. Areas with a higher value of apparent stress σapp are possible areas of potential seismic risk. It can be seen from the spatial distribution of the medium and shortterm apparent stress σapp before the Ms8.0 Wenchuan earthquake, the Longmenshan fault zone is in a low stress distribution area, and the relatively high apparent stress is in the peripheral area. These images may show medium and short-term locking phenomena near the seismogenic tectonics of the Ms8.0 Wenchuan earthquake. For example, changes with time of the focal parameter consistency of the sub-blocks in Sichuan and Yunnan Provinces, continual increase of thrust-type earthquakes in the Sichuan-Qinghai block and the appearance of spatial distribution areas of high apparent σapp stress. The work on this aspect was continued after the Ms8.0 Wenchuan earthquake, and the results seem to be shown a clearer relationship between these phenomena and future great earthquakes.展开更多
Through the sinusoid loading dynamic triaxial test, the liquefaction property of saturated loess and sand selected from a civil airport of Lanzhou, Gansu is examined. Based on the laboratory results, a comprehensive a...Through the sinusoid loading dynamic triaxial test, the liquefaction property of saturated loess and sand selected from a civil airport of Lanzhou, Gansu is examined. Based on the laboratory results, a comprehensive assessment on the earthquake liquefaction potential of the loess and sand is given, using the liquefaction resistance shear stress method and the results of seismic hazard assessment. It is found that under the effect of ground motion with exceedance probability of 10% within 50 years, the loess in the study is more susceptible to liquefaction than sand.展开更多
Based on ArcGIS and MapInfo software, we digitized the active tectonics map (1:4,000,000) of China, which was compiled and revised by academician Deng Qidong, and built the spatial database of active tectonics of Chin...Based on ArcGIS and MapInfo software, we digitized the active tectonics map (1:4,000,000) of China, which was compiled and revised by academician Deng Qidong, and built the spatial database of active tectonics of China. The database integrates rich active tectonic data, such as a catalogue of earthquakes with magnitude above 6.0, active faults, Quaternary basins, active folds and their associated attribute parameters, and implements scientific and effective management to this data. At the same time, the spatial database joins the spatial map data and the associated attribute data together, which implements the data query between spatial properties and attribute parameters and also makes it possible to perform spatial analysis with different data layers. These provide much convenience for earthquake study and allows engineering construction institutions to use this data in practical applications.展开更多
Crustal stress field holds an important position in geodynamics research, such as in plate motion simulations, uplift of the Qinghai-Xizang (Tibet) Plateau and earthquake preparation and occurrence. However, most of t...Crustal stress field holds an important position in geodynamics research, such as in plate motion simulations, uplift of the Qinghai-Xizang (Tibet) Plateau and earthquake preparation and occurrence. However, most of the crustal stress studies emphasize particularly on the determination of stress direction, with little study being done on stress magnitude at present. After reviewing ideas on a stress magnitude study from geological, geophysical and various other aspects, a method to estimate the stress magnitude in the source region according to the deflection of stress direction before and after large earthquakes and the stress drop tensor of earthquake rupture has been developed. The proposed method can also be supplemented by the average apparent stress before and after large earthquakes. The stress direction deflection before and after large earthquakes can be inverted by massive focal mechanisms of foreshocks and aftershocks and the stress drop field generated by the seismic source can be calculated by the detailed distribution of the earthquakes rupture. The mathematical relationship can then be constructed between the stress drop field, where its magnitude and direction are known and the stress tensor before and after large earthquakes, where its direction is known but magnitude is unknown, thereby obtaining the stress magnitude. The average apparent stress before and after large earthquakes can be obtained by using the catalog of broadband radiated energy and seismic moment tensor of foreshocks and aftershocks and the different responses to stress drops. This relationship leads to another estimation of stress magnitude before a large earthquake. The stress magnitude and its error are constrained by combining the two methods, which provide new constraints for the geodynamics study.展开更多
基金Scientific and Technology project(200808053)National Key Basic Research 973b project support
文摘Using the digital telemetric seismic waveform data of Chengdu and Kunming, this article studies the focal mechanism solutions and the apparent stress values of a large number of small earthquakes, and then analyzes the dynamic variation of regional stress fields and the spatio- temporal distribution of apparent stress values. The annual variation values of the azimuth of average principal stress field before the May 12, 2008 Ms8.0 Wenchuan earthquake in the Sichuan-Yunnan region were 58° from 2003 to 2004, 85° from 2003 to 2005,61° from 2006 to 2007 and 90° from 2006 to April 2008 respectively. In recent years, deflection or disturbances occurred in the azimuth of the average principal stress field in the Sichuan-Yunnan region. Analysis shows that this may be related to the change of stress field states of crustal blocks before and after the December 26, 2004 Ms9.0 Sumatra earthquake and the 2008 Ms8.0 Wenchuan earthquake. The ratio of thrust-type earthquakes in the Sichnan-Qinghai block was on the higher side in the period from 2006 to 2007, and the source faulting type of the regional moderate and small earthquakes had changed before the Ms8.0 Wenchnan earthquake. The change of state of the stress field is consistent with the changes in block displacement fields revealed by GPS data and the crustal shortening velocity vertical to the Longmenshan fault zone. Based on the radiation energy calculated from all bands of the seismic waveform, the value of apparent stress σapp is obtained. The fluctuation shape of the fitting trend of the apparent stress is related to the intensity of regional seismicity. It reveals that the micro- dynamic fluctuation process of the regional stress value is similar to the azimuth transition of the regional principal compressive stress field, which can be used to probe for pregnant physical processes. Areas with a higher value of apparent stress σapp are possible areas of potential seismic risk. It can be seen from the spatial distribution of the medium and shortterm apparent stress σapp before the Ms8.0 Wenchuan earthquake, the Longmenshan fault zone is in a low stress distribution area, and the relatively high apparent stress is in the peripheral area. These images may show medium and short-term locking phenomena near the seismogenic tectonics of the Ms8.0 Wenchuan earthquake. For example, changes with time of the focal parameter consistency of the sub-blocks in Sichuan and Yunnan Provinces, continual increase of thrust-type earthquakes in the Sichuan-Qinghai block and the appearance of spatial distribution areas of high apparent σapp stress. The work on this aspect was continued after the Ms8.0 Wenchuan earthquake, and the results seem to be shown a clearer relationship between these phenomena and future great earthquakes.
基金founded by the Special Social Commonweal Research Programs of the Ministry of Science and Technology of China (Grant No.2004DIB3J130)
文摘Through the sinusoid loading dynamic triaxial test, the liquefaction property of saturated loess and sand selected from a civil airport of Lanzhou, Gansu is examined. Based on the laboratory results, a comprehensive assessment on the earthquake liquefaction potential of the loess and sand is given, using the liquefaction resistance shear stress method and the results of seismic hazard assessment. It is found that under the effect of ground motion with exceedance probability of 10% within 50 years, the loess in the study is more susceptible to liquefaction than sand.
文摘Based on ArcGIS and MapInfo software, we digitized the active tectonics map (1:4,000,000) of China, which was compiled and revised by academician Deng Qidong, and built the spatial database of active tectonics of China. The database integrates rich active tectonic data, such as a catalogue of earthquakes with magnitude above 6.0, active faults, Quaternary basins, active folds and their associated attribute parameters, and implements scientific and effective management to this data. At the same time, the spatial database joins the spatial map data and the associated attribute data together, which implements the data query between spatial properties and attribute parameters and also makes it possible to perform spatial analysis with different data layers. These provide much convenience for earthquake study and allows engineering construction institutions to use this data in practical applications.
基金sponsored by the National Science Foundation Program(40374012)the Joint Earthquake Science Foundation Program(A07015),China
文摘Crustal stress field holds an important position in geodynamics research, such as in plate motion simulations, uplift of the Qinghai-Xizang (Tibet) Plateau and earthquake preparation and occurrence. However, most of the crustal stress studies emphasize particularly on the determination of stress direction, with little study being done on stress magnitude at present. After reviewing ideas on a stress magnitude study from geological, geophysical and various other aspects, a method to estimate the stress magnitude in the source region according to the deflection of stress direction before and after large earthquakes and the stress drop tensor of earthquake rupture has been developed. The proposed method can also be supplemented by the average apparent stress before and after large earthquakes. The stress direction deflection before and after large earthquakes can be inverted by massive focal mechanisms of foreshocks and aftershocks and the stress drop field generated by the seismic source can be calculated by the detailed distribution of the earthquakes rupture. The mathematical relationship can then be constructed between the stress drop field, where its magnitude and direction are known and the stress tensor before and after large earthquakes, where its direction is known but magnitude is unknown, thereby obtaining the stress magnitude. The average apparent stress before and after large earthquakes can be obtained by using the catalog of broadband radiated energy and seismic moment tensor of foreshocks and aftershocks and the different responses to stress drops. This relationship leads to another estimation of stress magnitude before a large earthquake. The stress magnitude and its error are constrained by combining the two methods, which provide new constraints for the geodynamics study.