The exploitation of competent electrocatalysts is a key issue of the broad application of many promising electrochemical processes,including the hydrogen evolution reaction(HER),the oxygen evolution reaction(OER),the ...The exploitation of competent electrocatalysts is a key issue of the broad application of many promising electrochemical processes,including the hydrogen evolution reaction(HER),the oxygen evolution reaction(OER),the oxygen reduction reaction(ORR),the CO_(2) reduction reaction(CO_(2)RR)and the nitrogen reduction reaction(NRR).The traditional searches for good electrocatalysts rely on the trial-and-error approaches,which are typically tedious and inefficient.In the past decades,some fundamental principles,activity descriptors and catalytic mechanisms have been established to accelerate the discovery of advanced electrocatalysts.Hence,it is time to summarize these theory-related research advances that unravel the structure-performance relationships and enables predictive ability in electrocatalysis studies.In this review,we summarize some basic aspects of catalytic theories that are commonly used in the design of electrocatalysts(e.g.,Sabatier principle,d-band theory,adsorption-energy scaling relation,activity descriptors)and their relevance.Then,we briefly introduced the fundamental mechanisms and central challenges of HER,OER,ORR,CO_(2)RR and NRR electrocatalysts,and highlight the theory-based efforts used to address the challenges facing these electrocatalysis processes.Finally,we propose the key challenges and opportunities of theory-driven electrocatalysis on their future.展开更多
A new analytical method for springback of small curvature plane bending is addressed with unloading rule of classical elastic-plastic theory and principle of strain superposition.We start from strain analysis of plane...A new analytical method for springback of small curvature plane bending is addressed with unloading rule of classical elastic-plastic theory and principle of strain superposition.We start from strain analysis of plane bending which has initial curvature,and the theoretic derivation is on the widely applicable basic hypotheses.The results are unified to geometry constraint equations and springback equation of plane bending,which can be evolved to straight beam plane bending and pure bending.The expanding and setting round process is one of the situations of plane bending,which is a bend-stretching process of plane curved beam.In the present study,springback equation of plane bending is used to analyze the expanding and setting round process,and the results agree with the experimental data.With a reasonable prediction accuracy,this new analytical method for springback of plane bending can meet the needs of applications in engineering.展开更多
文摘The exploitation of competent electrocatalysts is a key issue of the broad application of many promising electrochemical processes,including the hydrogen evolution reaction(HER),the oxygen evolution reaction(OER),the oxygen reduction reaction(ORR),the CO_(2) reduction reaction(CO_(2)RR)and the nitrogen reduction reaction(NRR).The traditional searches for good electrocatalysts rely on the trial-and-error approaches,which are typically tedious and inefficient.In the past decades,some fundamental principles,activity descriptors and catalytic mechanisms have been established to accelerate the discovery of advanced electrocatalysts.Hence,it is time to summarize these theory-related research advances that unravel the structure-performance relationships and enables predictive ability in electrocatalysis studies.In this review,we summarize some basic aspects of catalytic theories that are commonly used in the design of electrocatalysts(e.g.,Sabatier principle,d-band theory,adsorption-energy scaling relation,activity descriptors)and their relevance.Then,we briefly introduced the fundamental mechanisms and central challenges of HER,OER,ORR,CO_(2)RR and NRR electrocatalysts,and highlight the theory-based efforts used to address the challenges facing these electrocatalysis processes.Finally,we propose the key challenges and opportunities of theory-driven electrocatalysis on their future.
基金supported by the National Natural Science Foundation of China(Grant No.50805126)the Natural Science Foundation of Hebei Province(Grant No.E2009000389)
文摘A new analytical method for springback of small curvature plane bending is addressed with unloading rule of classical elastic-plastic theory and principle of strain superposition.We start from strain analysis of plane bending which has initial curvature,and the theoretic derivation is on the widely applicable basic hypotheses.The results are unified to geometry constraint equations and springback equation of plane bending,which can be evolved to straight beam plane bending and pure bending.The expanding and setting round process is one of the situations of plane bending,which is a bend-stretching process of plane curved beam.In the present study,springback equation of plane bending is used to analyze the expanding and setting round process,and the results agree with the experimental data.With a reasonable prediction accuracy,this new analytical method for springback of plane bending can meet the needs of applications in engineering.