The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the form...The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.展开更多
Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the no...Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the nonholonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the forms of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.展开更多
MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, in...MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.展开更多
Abstract Weak-localization effect in the presence of magnetic impurities is studied in disordered two-dimensional tight-binding square lattices around half filling. Both the magnetic and nonmagnetic impurities are ass...Abstract Weak-localization effect in the presence of magnetic impurities is studied in disordered two-dimensional tight-binding square lattices around half filling. Both the magnetic and nonmagnetic impurities are assumed to be randomly distributed on small fractions of the sites, while the nonmagnetic impurities have a strong potential yielding a unitary-limit scattering. We derive in details the expressions of diffusive π modes in the retarded-retarded (or advanced- advanced) channel, which result from the existence of particle-hole symmetry. The quantum interference correction to the density of states is calculated. While the magnetic-impurity scattering suppresses the quantum correction from π-mode cooperon, it does not affect the contribution of π-mode diffuson.展开更多
Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classic...Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classical perturbation method at grazing angle is overcome for the vertical polarization at a rough Neumann boundary of infinite extent. The derivation of the formulae and the numerical results show that the backscattering cross section depends on the grazing angle to the fourth power for both Neumann and Dirichlet boundary conditions with low grazing angle incidence. Our results can reduce to that of the classical small perturbation method by neglecting the Neumann and Dirichlet boundary conditions.展开更多
A chaotic dynamical system is characterized by a positive averaged exponential separation of two neighboring tra- jectories over a chaotic attractor. Knowledge of the Largest Lyapunov Exponent λ1 of a dynamical syste...A chaotic dynamical system is characterized by a positive averaged exponential separation of two neighboring tra- jectories over a chaotic attractor. Knowledge of the Largest Lyapunov Exponent λ1 of a dynamical system over a bounded attractor is necessary and sufficient for determining whether it is chaotic (λ1>0) or not (λ1≤0). We intended in this work to elaborate the connection between Local Lyapunov Exponents and the Largest Lyapunov Exponent where an alternative method to calculate λ1 has emerged. Finally, we investigated some characteristics of the fixed points and periodic orbits embedded within a chaotic attractor which led to the conclusion of the existence of chaotic attractors that may not embed in any fixed point or periodic orbit within it.展开更多
Group theory(GT) provides a rigorous framework for studying symmetries in various disciplines in physics ranging from quantum field theories and the standard model to fluid mechanics and chaos theory. To date, the app...Group theory(GT) provides a rigorous framework for studying symmetries in various disciplines in physics ranging from quantum field theories and the standard model to fluid mechanics and chaos theory. To date, the application of such a powerful tool in optical physics remains limited. Over the past few years however, several quantum-inspired symmetry principles(such as parity-time invariance and supersymmetry) have been introduced in optics and photonics for the first time. Despite the intense activities in these new research directions, only few works utilized the power of group theory. Motivated by this status quo, here we present a brief overview of the application of GT in optics, deliberately choosing examples that illustrate the power of this tool in both continuous and discrete setups. We hope that this review will stimulate further research that exploits the full potential of GT for investigating various symmetry paradigms in optics, eventually leading to new photonic devices.展开更多
文摘The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.
文摘Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the nonholonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the forms of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
文摘MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.
基金the Program for New Century Excellent Talents in Universities of China,中国科学院资助项目
文摘Abstract Weak-localization effect in the presence of magnetic impurities is studied in disordered two-dimensional tight-binding square lattices around half filling. Both the magnetic and nonmagnetic impurities are assumed to be randomly distributed on small fractions of the sites, while the nonmagnetic impurities have a strong potential yielding a unitary-limit scattering. We derive in details the expressions of diffusive π modes in the retarded-retarded (or advanced- advanced) channel, which result from the existence of particle-hole symmetry. The quantum interference correction to the density of states is calculated. While the magnetic-impurity scattering suppresses the quantum correction from π-mode cooperon, it does not affect the contribution of π-mode diffuson.
文摘Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classical perturbation method at grazing angle is overcome for the vertical polarization at a rough Neumann boundary of infinite extent. The derivation of the formulae and the numerical results show that the backscattering cross section depends on the grazing angle to the fourth power for both Neumann and Dirichlet boundary conditions with low grazing angle incidence. Our results can reduce to that of the classical small perturbation method by neglecting the Neumann and Dirichlet boundary conditions.
文摘A chaotic dynamical system is characterized by a positive averaged exponential separation of two neighboring tra- jectories over a chaotic attractor. Knowledge of the Largest Lyapunov Exponent λ1 of a dynamical system over a bounded attractor is necessary and sufficient for determining whether it is chaotic (λ1>0) or not (λ1≤0). We intended in this work to elaborate the connection between Local Lyapunov Exponents and the Largest Lyapunov Exponent where an alternative method to calculate λ1 has emerged. Finally, we investigated some characteristics of the fixed points and periodic orbits embedded within a chaotic attractor which led to the conclusion of the existence of chaotic attractors that may not embed in any fixed point or periodic orbit within it.
基金support from the Photonics and Mathematical Optics Group at Tecnologico de Monterrey and Consorcio enóptica Aplicada through CONACYT FORDECYT#290259 project grantsupport from Henes Center for Quantum Phenomena,Michigan Technological Universitysupport from Spanish MINECO projects FIS2014-57387-C3-3P and DPI2013-47100-C2-1-P
文摘Group theory(GT) provides a rigorous framework for studying symmetries in various disciplines in physics ranging from quantum field theories and the standard model to fluid mechanics and chaos theory. To date, the application of such a powerful tool in optical physics remains limited. Over the past few years however, several quantum-inspired symmetry principles(such as parity-time invariance and supersymmetry) have been introduced in optics and photonics for the first time. Despite the intense activities in these new research directions, only few works utilized the power of group theory. Motivated by this status quo, here we present a brief overview of the application of GT in optics, deliberately choosing examples that illustrate the power of this tool in both continuous and discrete setups. We hope that this review will stimulate further research that exploits the full potential of GT for investigating various symmetry paradigms in optics, eventually leading to new photonic devices.