期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
微极热弹性无限板的轴对称自由振动
1
作者 R·库玛 G·帕塔泊 +1 位作者 海治(译) 程昌钧(校) 《应用数学和力学》 CSCD 北大核心 2007年第3期335-348,共14页
研究了在应力自由和刚性固定边界条件下,无能量耗散的均匀、各向同性微极热弹性无限板的轴对称自由振动波的传播,导出了相应的对称和斜对称模态波传播的闭合式特征方程和不同区域的特征方程.对短波的情况,应力自由热绝缘和等温板中对称... 研究了在应力自由和刚性固定边界条件下,无能量耗散的均匀、各向同性微极热弹性无限板的轴对称自由振动波的传播,导出了相应的对称和斜对称模态波传播的闭合式特征方程和不同区域的特征方程.对短波的情况,应力自由热绝缘和等温板中对称和斜对称模态波传播的特征方程退化为Rayleigh表面波频率方程.根据导出的特征方程得到了热弹性、微极弹性和弹性板的结果.在对称和斜对称运动中计算了板的位移分量幅值、微转动幅值和温度分布,给出了对称和斜对称模式的频散曲线,并示出了位移分量和微转动幅值和温度分布的曲线.能够发现理论分析和数值结论是非常一致的. 展开更多
关键词 微极弹性板 无能量散的弹性理论 环形波 对称和斜对称振幅
下载PDF
新型干法水泥窑特性分析 被引量:1
2
作者 于志贤 《新世纪水泥导报》 CAS 1996年第6期25-28,共4页
本文论述了新型干法水泥窑内热负荷可大大地降低,但不管入窑生料碳酸盐分解率达到多高,窑内熟料形成过程的理论热耗总是正值(吸热);维持窑内较短的过渡带有利于窖内熟料煅烧过程的进行;长径比L/D为11~12的两轮箍预分解短窑比常规的三... 本文论述了新型干法水泥窑内热负荷可大大地降低,但不管入窑生料碳酸盐分解率达到多高,窑内熟料形成过程的理论热耗总是正值(吸热);维持窑内较短的过渡带有利于窖内熟料煅烧过程的进行;长径比L/D为11~12的两轮箍预分解短窑比常规的三轮箍预分解窑有较多的优越性。 展开更多
关键词 理论热耗 过渡带 两轮箍短窑 干法水泥窑
下载PDF
Entransy dissipation,entransy-dissipation-based thermal resistance and optimization of one-stream hybrid thermal network 被引量:11
3
作者 WANG WenHua CHENG XueTao LIANG XinGang 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第2期529-536,共8页
The one-stream hybrid thermal network is analyzed and discussed based on the entransy theory,and the results are compared with those from the entropy generation optimization.The theoretical analysis indicates that the... The one-stream hybrid thermal network is analyzed and discussed based on the entransy theory,and the results are compared with those from the entropy generation optimization.The theoretical analysis indicates that the minimum heat-flow-weighted temperature of the thermal networks corresponds to the minimum entransy dissipation rate and the minimum thermal resistance.For a simple hybrid thermal network consisting of three thermal components,the expression of entransy dissipation is conducted,and the heat transfer area and the mass flow rate are calculated and optimized.The optimal results are obtained in order to minimize the entransy dissipation and the thermal resistance.The optimal results are calculated for various combinations,such as series connection,parallel connection and other hybrid connections.The numerical results are in accordance with the theoretical analysis.Both the theoretical analysis and the numerical results show that the minimum entransy dissipation and the minimum thermal resistance correspond to the minimum heat-flow-weighted temperature of the thermal networks while the minimum entropy generation does not. 展开更多
关键词 entransy dissipation thermal resistance entropy generation hybrid thermal network heat transfer optimization
原文传递
Thermal performance analysis of non-uniform height rectangular fin based on constructal theory and entransy theory 被引量:4
4
作者 YANG Ai Bo CHEN Lin Gen +2 位作者 XIE Zhi Hui FENG Hui Jun SUN Feng Rui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1882-1891,共10页
A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the ... A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins. 展开更多
关键词 constructal design entransy theory maximum thermal resistance equivalent thermal resistance rectangular fin generalized thermodynamic optimization
原文传递
Entransy analyses of the thermodynamic cycle in a turbojet engine 被引量:8
5
作者 CHENG XueTao LIANG XinGang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第8期1160-1167,共8页
The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained... The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained.In this paper,the thermodynamic cycle in a turbojet engine is analyzed with the entransy theory and the T-Q diagram.The ideal thermodynamic cycle in which there is no inner irreversibility is analyzed,as well as the influences from some inner irreversible factors,such as the heat transfer process,the change of the component of the working fluid and the viscosity of the working fluid.For the discussed cases,it is shown that larger entransy loss rate always results in larger output power,while smaller entropy generation rate does not always.The corresponding T-Q diagrams are also presented,with which the change tendencies of the entransy loss rate and the output power can be shown very intuitively.It is shown that the entransy theory is applicable for analyzing the inner irreversible thermodynamic cycles discussed in this paper.Compared with the concept of entropy generation,the concept of entransy loss and the corresponding T-Q diagram are more suitable for describing the change of the output power of the analyzed turbojet engine no matter if the inner irreversible factors are considered. 展开更多
关键词 turbojet engine entransy analyses T-Q diagram inner irreversible cycle
原文传递
Power output analyses and optimizations of the Stirling cycle 被引量:13
6
作者 ZHOU Bing CHENG XueTao LIANG XinGang 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第1期228-236,共9页
Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this p... Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper. 展开更多
关键词 Stirling cycle entropy generation entransy loss finite time thermodynamics OPTIMIZATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部