From recent observational data two significant directions have been made in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, ...From recent observational data two significant directions have been made in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, to examine theoretical predictions from the standard inflationary ACDM which were made decades of years ago. Second, we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm. In particular, a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity. These models have achieved a series of considerable developments in recent years, in particular in their perturbative frameworks, which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations. Herein we present two representative paradigms of early universe physics. The first is the reputed new matter (or matter-ekpyrotic) bounce scenario in which the universe starts with a matter-dominated contraction phase and transitions into an ekpyrotic phase. In the setting of this paradigm, we have proposed some possible mechanisms of generating a red tilt for primordial curvature perturbations and confront the general predictions with recent cosmological observations. The second is the matter-bounce inflation scenario which can be viewed as an extension of inflationary cosmology with a matter contraction before inflation. We present a class of possible model constructions and review the implications on the current CMB experiments. Lastly a review of significant achievements of these paradigms beyond the inflationary ACDM model is made, which is expected to shed new light on the future direction of observational cosmology.展开更多
This paper investigates the effect of both unequal injection rates and different hopping rates on two-lane asymmetric simple exclusion processes(ASEPs) with asymmetric coupling. When the hopping rates of both lanes ar...This paper investigates the effect of both unequal injection rates and different hopping rates on two-lane asymmetric simple exclusion processes(ASEPs) with asymmetric coupling. When the hopping rates of both lanes are different, the system includes six steady phases, however, when the hopping rates of both lanes are same, the seventh phase(MC, MC) will exist in the system. Interestingly, with different hopping rates of both lanes, the densities of the system cannot be influenced by the non-zero vertical transition rate. Our theoretical arguments are in well agreement with extensively performed Monte Carlo simulations.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Department of Physics at McGill
文摘From recent observational data two significant directions have been made in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, to examine theoretical predictions from the standard inflationary ACDM which were made decades of years ago. Second, we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm. In particular, a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity. These models have achieved a series of considerable developments in recent years, in particular in their perturbative frameworks, which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations. Herein we present two representative paradigms of early universe physics. The first is the reputed new matter (or matter-ekpyrotic) bounce scenario in which the universe starts with a matter-dominated contraction phase and transitions into an ekpyrotic phase. In the setting of this paradigm, we have proposed some possible mechanisms of generating a red tilt for primordial curvature perturbations and confront the general predictions with recent cosmological observations. The second is the matter-bounce inflation scenario which can be viewed as an extension of inflationary cosmology with a matter contraction before inflation. We present a class of possible model constructions and review the implications on the current CMB experiments. Lastly a review of significant achievements of these paradigms beyond the inflationary ACDM model is made, which is expected to shed new light on the future direction of observational cosmology.
基金Supported by National Natural Science Foundation of China under Grant No.21301079
文摘This paper investigates the effect of both unequal injection rates and different hopping rates on two-lane asymmetric simple exclusion processes(ASEPs) with asymmetric coupling. When the hopping rates of both lanes are different, the system includes six steady phases, however, when the hopping rates of both lanes are same, the seventh phase(MC, MC) will exist in the system. Interestingly, with different hopping rates of both lanes, the densities of the system cannot be influenced by the non-zero vertical transition rate. Our theoretical arguments are in well agreement with extensively performed Monte Carlo simulations.