Solid lipid microparticles of erythromycin ethyl succinate were prepared using solvent evaporation method to improve its bioavailability and efficacy. The solvent was allowed to evaporate after which the various entra...Solid lipid microparticles of erythromycin ethyl succinate were prepared using solvent evaporation method to improve its bioavailability and efficacy. The solvent was allowed to evaporate after which the various entrapments were determined; the best entrapment was used in the in vivo studies to determine the bioavailability and efficacy. This study was done with albino mice. The best entrapment obtained was 83% with a loading capacity of 2.9% (Batch D) and was used in comparison with the unformulated drug to check for the in vivo efficacy. The results show higher efficacy with the formulated drug than with the pure drug both in vitro and in vivo. The in vitro test results were better despite that some enzymes which need to act on the solid lipid microparticles were not present in the in vitro assay and could lead to a reduction in the release of the drugs. In conclusion, there was improvement in efficacy, and hence bioavailability.展开更多
The aim of this work was to increase the efficacy of erythromycin ethyl succinate by encapsulation in beeswax lipid matrix using Myrj 52 as emulsifier. Different batches of SLM's (solid-lipid microparticles) were f...The aim of this work was to increase the efficacy of erythromycin ethyl succinate by encapsulation in beeswax lipid matrix using Myrj 52 as emulsifier. Different batches of SLM's (solid-lipid microparticles) were formulated and stable ones were selected. The encapsulation efficiency and loading capacities were calculated. The batch with the highest loading capacity was used for further assays. The particle size was determined by light microscopy. The sensitivity of different clinical bacterial isolates to erythromycin was tested using in vitro cultures and E. coli was selected for efficacy tests. The activity of the formulated drug was tested in the in vitro culture and compared to that of the unformulated drug. White albino mice were infected with E. coli and left for one day to develop significant bacteremia. They were then divided into 4 groups (n = 4) and treated with the formulation and unformulated drug at a dose of 7.14 mg/kg 8 hourly for 56 hours. A third group was given SLM's that do not contain drug, while another group was left untreated. The selected batch has an encapsulation efficiency of 94.83% with a loading capacity of 3.88%. The particle size was 17 ± 4 μm. At the end of the three day period of treatment, the group treated with unformulated erythromycin had much stooling anti weakness in the mice, and some deaths were recorded, while that treated with the formulation had 33.8% bacteremia and the clinical signs had largely subsided. The other two groups recorded deaths the following day after bacteremia induction. The results show marked improvement in efficacy of erythromycin ethyl succinate by formulation in SLMs with beeswax and lecithin as lipid matrix.展开更多
Hesperetin,an abundant bioactive component of citrus fruits,is poorly water-soluble,resulting in low oral bioavailability.We developed new formulations to improve the water solubility,antioxidant activity,and oral abs...Hesperetin,an abundant bioactive component of citrus fruits,is poorly water-soluble,resulting in low oral bioavailability.We developed new formulations to improve the water solubility,antioxidant activity,and oral absorption of hesperetin.Two nano-based formulations were developed,namely hesperetin-TPGS(D-α-tocopheryl polyethylene glycol 1000 succinate)micelles and hesperetin-phosphatidylcholine(PC)complexes.These two formulations were prepared by a simple technique called solvent dispersion,using US Food and Drug Administration(FDA)-approved excipients for drugs.Differential scanning calorimetry(DSC)and dynamic light scattering(DLS)were used to characterize the formulations’physical properties.Cytotoxicity analysis,cellular antioxidant activity assay,and a pharmacokinetic study were performed to evaluate the biological properties of these two formulations.The final weight ratios of both hesperetin to TPGS and hesperetin to PC were 1:12 based on their water solubility,which increased to 21.5-and 20.7-fold,respectively.The hesperetin-TPGS micelles had a small particle size of 26.19 nm,whereas the hesperetin-PC complexes exhibited a larger particle size of 219.15 nm.In addition,the cellular antioxidant activity assay indicated that both hesperetin-TPGS micelles and hesperetin-PC complexes increased the antioxidant activity of hesperetin to 4.2-and 3.9-fold,respectively.Importantly,the in vivo oral absorption study on rats indicated that the micelles and complexes significantly increased the peak plasma concentration(Cmax)from 2.64μg/mL to 20.67 and 33.09μg/mL and also increased the area under the concentration–time curve of hesperetin after oral administration to 16.2-and 18.0-fold,respectively.The micelles and complexes increased the solubility and remarkably improved the in vitro antioxidant activity and in vivo oral absorption of hesperetin,indicating these formulations’potential applications in drugs and healthcare products.展开更多
文摘Solid lipid microparticles of erythromycin ethyl succinate were prepared using solvent evaporation method to improve its bioavailability and efficacy. The solvent was allowed to evaporate after which the various entrapments were determined; the best entrapment was used in the in vivo studies to determine the bioavailability and efficacy. This study was done with albino mice. The best entrapment obtained was 83% with a loading capacity of 2.9% (Batch D) and was used in comparison with the unformulated drug to check for the in vivo efficacy. The results show higher efficacy with the formulated drug than with the pure drug both in vitro and in vivo. The in vitro test results were better despite that some enzymes which need to act on the solid lipid microparticles were not present in the in vitro assay and could lead to a reduction in the release of the drugs. In conclusion, there was improvement in efficacy, and hence bioavailability.
文摘The aim of this work was to increase the efficacy of erythromycin ethyl succinate by encapsulation in beeswax lipid matrix using Myrj 52 as emulsifier. Different batches of SLM's (solid-lipid microparticles) were formulated and stable ones were selected. The encapsulation efficiency and loading capacities were calculated. The batch with the highest loading capacity was used for further assays. The particle size was determined by light microscopy. The sensitivity of different clinical bacterial isolates to erythromycin was tested using in vitro cultures and E. coli was selected for efficacy tests. The activity of the formulated drug was tested in the in vitro culture and compared to that of the unformulated drug. White albino mice were infected with E. coli and left for one day to develop significant bacteremia. They were then divided into 4 groups (n = 4) and treated with the formulation and unformulated drug at a dose of 7.14 mg/kg 8 hourly for 56 hours. A third group was given SLM's that do not contain drug, while another group was left untreated. The selected batch has an encapsulation efficiency of 94.83% with a loading capacity of 3.88%. The particle size was 17 ± 4 μm. At the end of the three day period of treatment, the group treated with unformulated erythromycin had much stooling anti weakness in the mice, and some deaths were recorded, while that treated with the formulation had 33.8% bacteremia and the clinical signs had largely subsided. The other two groups recorded deaths the following day after bacteremia induction. The results show marked improvement in efficacy of erythromycin ethyl succinate by formulation in SLMs with beeswax and lecithin as lipid matrix.
基金Project supported by the National Natural Science Foundation of China(Nos.51773176,51522304,and U1501243)the Natural Science Foundation of Zhejiang Province(No.LY17H300002),China
文摘Hesperetin,an abundant bioactive component of citrus fruits,is poorly water-soluble,resulting in low oral bioavailability.We developed new formulations to improve the water solubility,antioxidant activity,and oral absorption of hesperetin.Two nano-based formulations were developed,namely hesperetin-TPGS(D-α-tocopheryl polyethylene glycol 1000 succinate)micelles and hesperetin-phosphatidylcholine(PC)complexes.These two formulations were prepared by a simple technique called solvent dispersion,using US Food and Drug Administration(FDA)-approved excipients for drugs.Differential scanning calorimetry(DSC)and dynamic light scattering(DLS)were used to characterize the formulations’physical properties.Cytotoxicity analysis,cellular antioxidant activity assay,and a pharmacokinetic study were performed to evaluate the biological properties of these two formulations.The final weight ratios of both hesperetin to TPGS and hesperetin to PC were 1:12 based on their water solubility,which increased to 21.5-and 20.7-fold,respectively.The hesperetin-TPGS micelles had a small particle size of 26.19 nm,whereas the hesperetin-PC complexes exhibited a larger particle size of 219.15 nm.In addition,the cellular antioxidant activity assay indicated that both hesperetin-TPGS micelles and hesperetin-PC complexes increased the antioxidant activity of hesperetin to 4.2-and 3.9-fold,respectively.Importantly,the in vivo oral absorption study on rats indicated that the micelles and complexes significantly increased the peak plasma concentration(Cmax)from 2.64μg/mL to 20.67 and 33.09μg/mL and also increased the area under the concentration–time curve of hesperetin after oral administration to 16.2-and 18.0-fold,respectively.The micelles and complexes increased the solubility and remarkably improved the in vitro antioxidant activity and in vivo oral absorption of hesperetin,indicating these formulations’potential applications in drugs and healthcare products.