针对传统基于图像特征提取的瑕疵检测方法过于依赖特征提取效果,且泛化能力较差以及人工质检存在的效率低、易受主观因素影响等问题,本文提出了一种基于深度卷积神经网络的图像瑕疵识别方法,基于ResNet50卷积神经网络,构建了分类模型。...针对传统基于图像特征提取的瑕疵检测方法过于依赖特征提取效果,且泛化能力较差以及人工质检存在的效率低、易受主观因素影响等问题,本文提出了一种基于深度卷积神经网络的图像瑕疵识别方法,基于ResNet50卷积神经网络,构建了分类模型。并增大了输入网络的图像尺寸;采用多种图像变换增强数据;修改损失函数让模型更加关注困难样本。该模型在测试集上的AUC (Area Under Curve)值可以达到0.905,同时F1分数达到了0.81。此外本文提出了一种基于滑动窗口检测的瑕疵识别方法,提高对图像中细节的关注,大幅提升了原模型的分类性能。展开更多
文摘针对传统基于图像特征提取的瑕疵检测方法过于依赖特征提取效果,且泛化能力较差以及人工质检存在的效率低、易受主观因素影响等问题,本文提出了一种基于深度卷积神经网络的图像瑕疵识别方法,基于ResNet50卷积神经网络,构建了分类模型。并增大了输入网络的图像尺寸;采用多种图像变换增强数据;修改损失函数让模型更加关注困难样本。该模型在测试集上的AUC (Area Under Curve)值可以达到0.905,同时F1分数达到了0.81。此外本文提出了一种基于滑动窗口检测的瑕疵识别方法,提高对图像中细节的关注,大幅提升了原模型的分类性能。