To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomo...To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomotive are established.The coupling vibration equations of axle hung motor and wheelset are derived.For the air braking,the influence mechanism of ABSF on the wheel-rail asymmetric motion and force characteristics are discussed.It can be found that if the ABSF is applied in the front wheelset,all the wheelsets move laterally in the same direction.Once the ABSF occurs in the middle or rear one,other wheelsets may move laterally towards the opposite direction.The motion amplitude and direction of all wheelsets strictly depend on the resultant moment of suspension yawing moment and brake shoe asymmetric moment.For the asymmetric braking,the free lateral gap of axle-box could increase the wheelset motion amplitude,but could not change the moving direction.In both the straight line and curve,the ABSF may lead to wheelset misaligning motion,intensify the wheel-rail lateral dynamic interaction and deteriorate wheel-rail contact state.Especially for the steering wheelsets,the asymmetric braking increases the wheelset attack angle significantly,which forms the worst braking condition.展开更多
The flame propagation of methane-air mixture with various methane concen-trations was experimentally investigated at venting flame acceleration tube with quad-rate cross section under different obstacles presented. Th...The flame propagation of methane-air mixture with various methane concen-trations was experimentally investigated at venting flame acceleration tube with quad-rate cross section under different obstacles presented. The flame shape and propaga-tion speed was observed by high-speed color video camera. The explosion pressure was determined by piezoelectricity pressure transducers. The results are: The flame propagates in the shape of a hemisphere before the flame reaches the first baffle and flame propagation speed is not more than 15 m/s. When the flame propagates across the baffle, the flame begins to accelerate due to turbulence induced by obstacle. Blockage ratio has relatively greater effect on the flame propagation speed than re-peated baffle number does. The flame propagation speed and the pressure at different location along the tube are maximum when methane-air mixture is near the chemical stoichoimetric ratio. The pressure increases with the distance from ignition end at first and the maximum pressure was obtained at the middle of tube, but the pressure de-creases and again increases at venting end.展开更多
This paper presents an advanced and integrated research approach to longwall mining-induced strata move- ment, stress changes, fractures, and gas flow dynamics with actual examples of its application from recent studi...This paper presents an advanced and integrated research approach to longwall mining-induced strata move- ment, stress changes, fractures, and gas flow dynamics with actual examples of its application from recent studies for coextraction of coal and methane development at Huainan Mining Group in China, in a deep and multi-seam mining environment. The advanced approach takes advantage of the latest techniques in Australia for mine scale geotechnical characterisation, field measurement, monitoring and numerical modelling. Key techniques described in this paper include coal mine site 3D geotechnical characterisation methods, surface deep downhole multi-point extensometers and piezometers for overburden displacement and pore pressure measurements during mining, tracer gas tests for goal gas flow patterns, and advanced numerical modelling codes for coupled coal mine strata, water and gas simulations, and longwall goaf gas ttow investigations. This integrated approach has resulted in significant insights into the complex dynamic imeraction between strata, groundwater, and gas during mining at Huainan Mining Group in recent years. Based on the lindings from the extensive field monitoring and numerical modelling studies, a three-dimensional annular-shaped over-lying zone along the perimeter of the longwall panel was identified for optimal methane drainage during mining.展开更多
Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In ...Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In this paper, a fully thermo-hydro-mechanical(THM) coupled model which represents the non-linear responses of gas extraction was implemented to demonstrate the reliability of this model through history data matching. Based on this model, the susceptibilities of gas extraction with single slotted borehole, including the permeability, the gas pressure, the temperature, the coal adsorption characteristics and the radius of slot, were quantified through a series of simulations. The simulation results revealed that increasing the permeability, initial gas pressure and temperature could develop the influence radius of single slotted borehole. This finite element model and its simulation results can improve the understanding of the coal-gas interactions of underground gas drainage and provide a scientific basis for the optimization of drainage systems.展开更多
Multiple coal seams widely develop in the deep Chinese coal-bearing strata. Ground in situ stress and coal seam gas pressure increase continuously with the increase of the mining depth, and coal and gas outburst disas...Multiple coal seams widely develop in the deep Chinese coal-bearing strata. Ground in situ stress and coal seam gas pressure increase continuously with the increase of the mining depth, and coal and gas outburst disasters become increasingly severe. When the coal is very deep, the gas content and pressure will elevate and thus coal seams tends to outburst-prone seams. The safety and economics of exploited firstmined coal seams are tremendously restricted. Meanwhile, the multiple seams occurrence conditions resulted in different methane pressure systems in the coal-bearing strata, which made the reservoir reconstruction of coal difficult. Given the characteristics of low saturation, low permeability, strong anisotropy and soft coal of Chinese coal seams, a single hydraulic fracturing surface well for reservoir reconstruction to pre-drain the coalbed methane(CBM) of multiple seams concurrently under the different gas pressure systems has not yet gained any breakthroughs. Based on analyses of the main features of deep CBM reservoirs in China, current gas control methods and the existing challenges in deep and multiple seams, we proposed a new technology for deep CBM reservoir reconstruction to realize simultaneous high-efficiency coal mining and gas extraction. In particular, we determined the first-mined seam according to the principles of effectiveness and economics, and used hydraulic fracturing surface well to reconstruct the first-mined seam which enlarges the selection range of the first-mined seam. During the process of mining first-mined seam, adjacent coal seams could be reconstructed under the mining effect which promoted high-efficiency pressure relief gas extraction by using spatial and comprehensive gas drainage methods(combination of underground and ground CBM extraction methods). A typical integrated reservoir reconstruction technology, ‘‘One well for triple use", was detailed introduced and successfully applied in the Luling coal mine. The application showed that the proposed technology could effectively promote coal mining safety and simultaneously high-efficiency gas extraction.展开更多
To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the pa...To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.展开更多
The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to descri...The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.展开更多
The existing bypotheses of coal and gas outburst mechanism are all based on the elasticity mechanies. Since they have not taken time factor into eonsideration, these hypotheses can not give a satisfactory explanation ...The existing bypotheses of coal and gas outburst mechanism are all based on the elasticity mechanies. Since they have not taken time factor into eonsideration, these hypotheses can not give a satisfactory explanation of the oceurrence and development of the outburst. A creep mathematital model of gas-contaming coal,which can better expdri the phenomenon of coal and methane outbursts,has been set up through creep tests and analyses under the condition of triaxiai compression.The tests have proved that there isn’ t essential difference between the rheological properties of outburst prone coal and non-outburst prone coal. Outburst can happen in any kind of coal if the rheologicai conditions exist. The creep mathematital model provides a soild foundation for establlshing a comprebcnsive criterion of coal and gas outburst.展开更多
Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille ...Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good.展开更多
基金Projects(52072249,51605315)supported by the National Natural Science Foundation of ChinaProject(E2018210052)supported by the Natural Science Foundation of Hebei Province,ChinaProject(TPL1707)supported by the Open Funds for the State Key Laboratory of Traction Power,China。
文摘To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomotive are established.The coupling vibration equations of axle hung motor and wheelset are derived.For the air braking,the influence mechanism of ABSF on the wheel-rail asymmetric motion and force characteristics are discussed.It can be found that if the ABSF is applied in the front wheelset,all the wheelsets move laterally in the same direction.Once the ABSF occurs in the middle or rear one,other wheelsets may move laterally towards the opposite direction.The motion amplitude and direction of all wheelsets strictly depend on the resultant moment of suspension yawing moment and brake shoe asymmetric moment.For the asymmetric braking,the free lateral gap of axle-box could increase the wheelset motion amplitude,but could not change the moving direction.In both the straight line and curve,the ABSF may lead to wheelset misaligning motion,intensify the wheel-rail lateral dynamic interaction and deteriorate wheel-rail contact state.Especially for the steering wheelsets,the asymmetric braking increases the wheelset attack angle significantly,which forms the worst braking condition.
文摘The flame propagation of methane-air mixture with various methane concen-trations was experimentally investigated at venting flame acceleration tube with quad-rate cross section under different obstacles presented. The flame shape and propaga-tion speed was observed by high-speed color video camera. The explosion pressure was determined by piezoelectricity pressure transducers. The results are: The flame propagates in the shape of a hemisphere before the flame reaches the first baffle and flame propagation speed is not more than 15 m/s. When the flame propagates across the baffle, the flame begins to accelerate due to turbulence induced by obstacle. Blockage ratio has relatively greater effect on the flame propagation speed than re-peated baffle number does. The flame propagation speed and the pressure at different location along the tube are maximum when methane-air mixture is near the chemical stoichoimetric ratio. The pressure increases with the distance from ignition end at first and the maximum pressure was obtained at the middle of tube, but the pressure de-creases and again increases at venting end.
文摘This paper presents an advanced and integrated research approach to longwall mining-induced strata move- ment, stress changes, fractures, and gas flow dynamics with actual examples of its application from recent studies for coextraction of coal and methane development at Huainan Mining Group in China, in a deep and multi-seam mining environment. The advanced approach takes advantage of the latest techniques in Australia for mine scale geotechnical characterisation, field measurement, monitoring and numerical modelling. Key techniques described in this paper include coal mine site 3D geotechnical characterisation methods, surface deep downhole multi-point extensometers and piezometers for overburden displacement and pore pressure measurements during mining, tracer gas tests for goal gas flow patterns, and advanced numerical modelling codes for coupled coal mine strata, water and gas simulations, and longwall goaf gas ttow investigations. This integrated approach has resulted in significant insights into the complex dynamic imeraction between strata, groundwater, and gas during mining at Huainan Mining Group in recent years. Based on the lindings from the extensive field monitoring and numerical modelling studies, a three-dimensional annular-shaped over-lying zone along the perimeter of the longwall panel was identified for optimal methane drainage during mining.
基金financial support from the National Natural Science Foundation of China (No.51404250)the Fundamental Research Funds for the Central Universities (No.2013QNB19)+2 种基金the Natural Science Foundation of Jiangsu,China (No.BK20140189)the China Postdoctoral Science Foundation (Nos.2014M550315,2014M550316,2016T90526)the College Graduate Research and Innovation Program of Jiangsu Province (No.KYLX15_1408)
文摘Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In this paper, a fully thermo-hydro-mechanical(THM) coupled model which represents the non-linear responses of gas extraction was implemented to demonstrate the reliability of this model through history data matching. Based on this model, the susceptibilities of gas extraction with single slotted borehole, including the permeability, the gas pressure, the temperature, the coal adsorption characteristics and the radius of slot, were quantified through a series of simulations. The simulation results revealed that increasing the permeability, initial gas pressure and temperature could develop the influence radius of single slotted borehole. This finite element model and its simulation results can improve the understanding of the coal-gas interactions of underground gas drainage and provide a scientific basis for the optimization of drainage systems.
基金supported by the National Key Research and Development Program of China(No.2016YFC0801406)the National Natural Science Foundation of China(No.51674252)+4 种基金the Visitor Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(Chongqing University)(No.2011DA105287-FW201405)the Qing Lan Projectthe Sponsorship of Jiangsu Overseas Research&Training Program for University Prominent Young&Middle-Aged Teachers and Presidentsthe Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities of China(No.106112015CDJXY240001)
文摘Multiple coal seams widely develop in the deep Chinese coal-bearing strata. Ground in situ stress and coal seam gas pressure increase continuously with the increase of the mining depth, and coal and gas outburst disasters become increasingly severe. When the coal is very deep, the gas content and pressure will elevate and thus coal seams tends to outburst-prone seams. The safety and economics of exploited firstmined coal seams are tremendously restricted. Meanwhile, the multiple seams occurrence conditions resulted in different methane pressure systems in the coal-bearing strata, which made the reservoir reconstruction of coal difficult. Given the characteristics of low saturation, low permeability, strong anisotropy and soft coal of Chinese coal seams, a single hydraulic fracturing surface well for reservoir reconstruction to pre-drain the coalbed methane(CBM) of multiple seams concurrently under the different gas pressure systems has not yet gained any breakthroughs. Based on analyses of the main features of deep CBM reservoirs in China, current gas control methods and the existing challenges in deep and multiple seams, we proposed a new technology for deep CBM reservoir reconstruction to realize simultaneous high-efficiency coal mining and gas extraction. In particular, we determined the first-mined seam according to the principles of effectiveness and economics, and used hydraulic fracturing surface well to reconstruct the first-mined seam which enlarges the selection range of the first-mined seam. During the process of mining first-mined seam, adjacent coal seams could be reconstructed under the mining effect which promoted high-efficiency pressure relief gas extraction by using spatial and comprehensive gas drainage methods(combination of underground and ground CBM extraction methods). A typical integrated reservoir reconstruction technology, ‘‘One well for triple use", was detailed introduced and successfully applied in the Luling coal mine. The application showed that the proposed technology could effectively promote coal mining safety and simultaneously high-efficiency gas extraction.
基金Financial support for this work,provided by the National Natural Science Foundation of China(Nos.51327007,51104118 and51204134)Shaanxi Province Youth Science and Technology Star Project of China(2014KJXX69)
文摘To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.
基金the fund of"National‘Twelfth Five-Year’Plan for Science&Technology Support"(No.2012BAE05B04)"Research on Hydrocracking Catalysts Grading Technology"undertaken by Fushun Research Institute of Petroleum and Petrochemicals(FRIPP)supported by SINOPEC(No.101102)
文摘The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.
文摘The existing bypotheses of coal and gas outburst mechanism are all based on the elasticity mechanies. Since they have not taken time factor into eonsideration, these hypotheses can not give a satisfactory explanation of the oceurrence and development of the outburst. A creep mathematital model of gas-contaming coal,which can better expdri the phenomenon of coal and methane outbursts,has been set up through creep tests and analyses under the condition of triaxiai compression.The tests have proved that there isn’ t essential difference between the rheological properties of outburst prone coal and non-outburst prone coal. Outburst can happen in any kind of coal if the rheologicai conditions exist. The creep mathematital model provides a soild foundation for establlshing a comprebcnsive criterion of coal and gas outburst.
基金supported by the State Key Research Development Program of China (Nos. 2016YFC0801402 and 2016YFC0600708)the National Natural Science Foundation of China (No. 51474219)
文摘Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good.