Transient sorption and desorption of helium and carbon dioxide in Upper Freeport coal powder and lumps were analyzed. Differences in texture and porosity between the powder and lumps may affect the transport and inter...Transient sorption and desorption of helium and carbon dioxide in Upper Freeport coal powder and lumps were analyzed. Differences in texture and porosity between the powder and lumps may affect the transport and interaction of the penetrant and coal. In this work, we address macroscopic and mesoscopic structural differences between powdered and non-powdered coals that influence the rates of the gas transport kinetics and changes in coal texture (swelling, shrinkage, and changes in the pore structure and interconnectivity) and the reciprocal free-phase pressure decay (relaxation). Com- parison of the multi-exponential relaxation time constants as a function of pressure, for CO2 and inert gas (helium), allows us to postulate several mechanisms responsible for observed pressure decay patterns.展开更多
Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille ...Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good.展开更多
In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequ...In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.展开更多
文摘Transient sorption and desorption of helium and carbon dioxide in Upper Freeport coal powder and lumps were analyzed. Differences in texture and porosity between the powder and lumps may affect the transport and interaction of the penetrant and coal. In this work, we address macroscopic and mesoscopic structural differences between powdered and non-powdered coals that influence the rates of the gas transport kinetics and changes in coal texture (swelling, shrinkage, and changes in the pore structure and interconnectivity) and the reciprocal free-phase pressure decay (relaxation). Com- parison of the multi-exponential relaxation time constants as a function of pressure, for CO2 and inert gas (helium), allows us to postulate several mechanisms responsible for observed pressure decay patterns.
基金supported by the State Key Research Development Program of China (Nos. 2016YFC0801402 and 2016YFC0600708)the National Natural Science Foundation of China (No. 51474219)
文摘Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good.
基金Projects(51278462,51378469)supported by the National Natural Science Foundation of ChinaProject(2011B81005)supported by Ningbo Science and Technology Innovation Team,ChinaProject(2013A610202)supported by Ningbo Natural Science Foundation of China
文摘In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.