Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics o...Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.展开更多
Based on the nowadays' condition, it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems. The wireless sensors distributed in the environment can achieve...Based on the nowadays' condition, it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems. The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system. Apply with multilayer data fuse to design working tactics, and import the artificial neural networks to analyze detecting result. The wireless sensors system communicates with the control center through the optical fiber cable. All the gas sensor nodes distributed in coal mine are combined into an intelligent, flexible structure wireless network system, forming coal mine gas monitoring system based on wireless sensor network.展开更多
The prediction study on coal and gas outbursts is carried out by monitoring some indices which are sensitive to the initiation of coal and gas outbursts. The values and changing roles of the indices are the foundation...The prediction study on coal and gas outbursts is carried out by monitoring some indices which are sensitive to the initiation of coal and gas outbursts. The values and changing roles of the indices are the foundations of coal and gas outbursts prediction. But now, only the data of ere key monitoring station is used in the coal and gas outbursts prediction practice, and the other data are ignored. In order to overcome the human factor and make full use of the monitoring information, the technique of multi-sensor target tracking is proposed to deal with the microseismic informatiion. With the results of microseismic events, the activities of geological structure, fracure-depth of roof and floor, and the location of gas channel are obtained. These studies indicate that it is considerably possible to predict the coal and gas outbursts using microseismic monitoring with its inherent ability to remotely monitor the progressive failure caused by mining.展开更多
基金Supported by the National Natural Science Foundation of China (40971275, 50811120111)
文摘Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.
基金Supported by the National Natural Science Foundation of China(50534060)
文摘Based on the nowadays' condition, it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems. The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system. Apply with multilayer data fuse to design working tactics, and import the artificial neural networks to analyze detecting result. The wireless sensors system communicates with the control center through the optical fiber cable. All the gas sensor nodes distributed in coal mine are combined into an intelligent, flexible structure wireless network system, forming coal mine gas monitoring system based on wireless sensor network.
基金supported by National Basic Research Programof China(973Program,2010CB226805)Shandong Province Natural Science Fund(Z2008F01)Key Laboratory of Mine Disaster Prevention and Control of Education Ministry(MDPC0809,MDPC0811)
文摘The prediction study on coal and gas outbursts is carried out by monitoring some indices which are sensitive to the initiation of coal and gas outbursts. The values and changing roles of the indices are the foundations of coal and gas outbursts prediction. But now, only the data of ere key monitoring station is used in the coal and gas outbursts prediction practice, and the other data are ignored. In order to overcome the human factor and make full use of the monitoring information, the technique of multi-sensor target tracking is proposed to deal with the microseismic informatiion. With the results of microseismic events, the activities of geological structure, fracure-depth of roof and floor, and the location of gas channel are obtained. These studies indicate that it is considerably possible to predict the coal and gas outbursts using microseismic monitoring with its inherent ability to remotely monitor the progressive failure caused by mining.