An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal a...An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal are met. Outbursting is recognized as a two-step process, i.e., initiation and development. In this paper, we present a fully-coupled solid and fluid code to model the entire process of an outburst. The deformation, failure and fracture of solid (coal) are modeled with the discrete element method, and the flow of fluid (gas and water) such as free flow and Darcy flow are modeled with the lattice Boltzmann method. These two methods are coupled in a two-way process, i.e., the solid part provides a moving boundary condition and transfers momentum to the fluid, while the fluid exerts a dragging force upon the solid. Gas desorption from coal occurs at the solid-fluid boundary, and gas diffusion is implemented in the solid code where particles are assumed to be porous. A simple 2D example to simulate the process of an outburst with the model is also presented in this paper to demonstrate the capability of the coupled model.展开更多
Coal and gas outburst is one of the most serious natural calamities in collieries. And protective layer mining is an effective regional method for preventing and controlling coal outburst. However, how to rationally d...Coal and gas outburst is one of the most serious natural calamities in collieries. And protective layer mining is an effective regional method for preventing and controlling coal outburst. However, how to rationally determine the mining safety range in coal mining of protective layer with quantitative analysis is a difficult problem in rock mechanics and mining engineering so far. Then in this paper applied solid gas interaction mechanics for gas leakage flow, the solid gas interaction analysis for the safety range of up protective layer mining has been achieved with the results of experimental research and in situ measurements so that the result of numerical simulation for the difficult problem is closer to reality. Furthermore, the safety range of up protective layer mining can be determined with time dependent based on the result of numerical simulation.展开更多
Based on the basic theory of gas seepage and coal seam deformation, using the numerical simulation method, this paper established the gas-solid coupling model of gas drainage from borehole. Using multi-physical coupli...Based on the basic theory of gas seepage and coal seam deformation, using the numerical simulation method, this paper established the gas-solid coupling model of gas drainage from borehole. Using multi-physical coupling analysis software, the authors studied the stress change conditions around the drainage borehole, the influence of the gas drainage effect caused by the drilling gap, and the gas drainage effect under the conditions of different borehole radius and different permeabilities. The results show that the effective drainage radius is 1.03 m during 30 days of drainage. The effect of the diameter change of the drainage borehole is limited, but the influence of coal seam permeability is much bigger. After the same drainage period, the greater the permeability of coal seam is, the bigger the drainage radius is. For a low permeability coal seam, coal miners should take pressure-relief measures and increase the permeability to improve the drainage effects before draining gas through drilling.展开更多
基金Projects(U23A20600,52374127,52274128,52174159)supported by the National Natural Science Foundation of ChinaProject(2022M713386)supported by the Postdoctoral Science Foundation of China。
文摘针对具有软煤分层的突出煤体,为了更加准确地检验瓦斯抽采效果,必须研究瓦斯抽采后软、硬煤残余瓦斯含量之间的差异性.基于抽采条件下的瓦斯渗流场分析,考虑了煤层中存在软煤条件下对瓦斯流动及煤层的综合影响,通过建立瓦斯流固耦合方程,并结合钻孔抽采瓦斯的初始条件和边界条件,运用多物理场耦合分析软件模拟了抽采条件下软、硬煤的残余瓦斯含量的差异性.数值模拟结果表明:在相同的抽采时间内,软煤的残余瓦斯含量始终高于硬煤,软煤瓦斯含量降到8 m3/t需要180 d,硬煤瓦斯含量降到8 m3/t需要162 d.
文摘An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal are met. Outbursting is recognized as a two-step process, i.e., initiation and development. In this paper, we present a fully-coupled solid and fluid code to model the entire process of an outburst. The deformation, failure and fracture of solid (coal) are modeled with the discrete element method, and the flow of fluid (gas and water) such as free flow and Darcy flow are modeled with the lattice Boltzmann method. These two methods are coupled in a two-way process, i.e., the solid part provides a moving boundary condition and transfers momentum to the fluid, while the fluid exerts a dragging force upon the solid. Gas desorption from coal occurs at the solid-fluid boundary, and gas diffusion is implemented in the solid code where particles are assumed to be porous. A simple 2D example to simulate the process of an outburst with the model is also presented in this paper to demonstrate the capability of the coupled model.
文摘Coal and gas outburst is one of the most serious natural calamities in collieries. And protective layer mining is an effective regional method for preventing and controlling coal outburst. However, how to rationally determine the mining safety range in coal mining of protective layer with quantitative analysis is a difficult problem in rock mechanics and mining engineering so far. Then in this paper applied solid gas interaction mechanics for gas leakage flow, the solid gas interaction analysis for the safety range of up protective layer mining has been achieved with the results of experimental research and in situ measurements so that the result of numerical simulation for the difficult problem is closer to reality. Furthermore, the safety range of up protective layer mining can be determined with time dependent based on the result of numerical simulation.
基金Supported by the National Natural Science Foundation of China (51174212) the Program for New Century Excellent Talents in University of China (NCET-10-0724) the Fundamental Research Funds for the Central Universities (2010QZ05)
文摘Based on the basic theory of gas seepage and coal seam deformation, using the numerical simulation method, this paper established the gas-solid coupling model of gas drainage from borehole. Using multi-physical coupling analysis software, the authors studied the stress change conditions around the drainage borehole, the influence of the gas drainage effect caused by the drilling gap, and the gas drainage effect under the conditions of different borehole radius and different permeabilities. The results show that the effective drainage radius is 1.03 m during 30 days of drainage. The effect of the diameter change of the drainage borehole is limited, but the influence of coal seam permeability is much bigger. After the same drainage period, the greater the permeability of coal seam is, the bigger the drainage radius is. For a low permeability coal seam, coal miners should take pressure-relief measures and increase the permeability to improve the drainage effects before draining gas through drilling.