期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响 被引量:40
1
作者 李祥春 李忠备 +3 位作者 张良 高佳星 聂百胜 孟洋洋 《煤炭学报》 EI CAS CSCD 北大核心 2019年第S01期142-156,共15页
基于气体吸附理论,采用低温液氮吸附法(LT-N 2 GA),CO 2吸附法和扫描电镜法(SEM),从孔容、比表面积、孔径分布和孔隙形状4个方面,研究分析了8种不同变质程度煤样的孔隙结构。并结合煤粒瓦斯扩散实验,计算出煤样的迂曲度和瓦斯扩散通道长... 基于气体吸附理论,采用低温液氮吸附法(LT-N 2 GA),CO 2吸附法和扫描电镜法(SEM),从孔容、比表面积、孔径分布和孔隙形状4个方面,研究分析了8种不同变质程度煤样的孔隙结构。并结合煤粒瓦斯扩散实验,计算出煤样的迂曲度和瓦斯扩散通道长度,分析讨论了不同煤阶煤体孔隙结构对瓦斯解吸扩散规律的影响及机理。结果表明:不同煤阶煤样的吸附能力存在显著的差异。随变质程度的加深,吸附能力呈先降低后升高的U形规律;SEM观察结果与低温液氮吸附等温线分析的孔隙形态整体上较为一致,不同煤阶煤样的孔隙形态有很大差异,表明煤体表面的异质性;吸附分析显示中孔孔径呈多峰分布,孔容主要由2~15 nm的中孔贡献;煤体微孔段的吸附能力取决于0.6~0.9 nm和1.5~2.0 nm孔径段。煤质对瓦斯解吸扩散的影响主要与孔隙结构的差异有关。不同煤阶煤体孔隙率和迂曲度不同,瓦斯扩散通道长度不同,随着扩散通道长度的增加,瓦斯初始解吸速率呈指数形式减小;瓦斯在煤体孔隙中的扩散以微孔内的表面扩散为主,孔比表面积越大,表面扩散越显著;瓦斯解吸量和初始扩散系数与煤阶之间呈现不对称U形关系,在高阶煤阶段(V daf<15%),随着挥发分的增加,瓦斯解吸量和初始扩散系数显著减小。在中、低阶煤阶段(V daf>15%),随着挥发分的增加,二者缓慢增加。 展开更多
关键词 煤阶 孔隙结构表征 微孔 扩散通道 瓦斯解吸扩散规律
下载PDF
粒度对软硬煤粒瓦斯解吸扩散差异性的影响 被引量:68
2
作者 刘彦伟 刘明举 《煤炭学报》 EI CAS CSCD 北大核心 2015年第3期579-587,共9页
基于气体在多孔介质的运移理论,采用物理模拟实验的方法,研究了软、硬煤粒瓦斯扩散速度、扩散系数的差异特征随粒径的变化规律;采用压汞法考察了软、硬煤粒孔隙结构特征的差异,分析了粒径对软硬煤瓦斯扩散行为差异性的影响机理。研究结... 基于气体在多孔介质的运移理论,采用物理模拟实验的方法,研究了软、硬煤粒瓦斯扩散速度、扩散系数的差异特征随粒径的变化规律;采用压汞法考察了软、硬煤粒孔隙结构特征的差异,分析了粒径对软硬煤瓦斯扩散行为差异性的影响机理。研究结果表明,当粒度大于等于硬煤的极限粒度时,软、硬煤瓦斯扩散初速度差值和扩散系数比值达到最大值,且基本趋于稳定;当粒度小于硬煤的极限粒度时,软、硬煤瓦斯扩散初速度差值和扩散系数比值随粒度的减小而减小;当粒径减小到一定程度——称该粒度为原始粒度,软、硬煤的瓦斯扩散速度和扩散系数几乎没有差别。软煤相对于硬煤和粒度减小,均使大中孔的孔容显著增大,即粒度减小会缩小软硬煤之间瓦斯解吸扩散通道的差别。软硬煤孔隙结构差异是导致瓦斯扩散速度和瓦斯扩散系数随粒径变化规律产生差别的本质原因。以上研究成果为钻屑瓦斯解吸指标、瓦斯放散初速度和煤层瓦斯含量等测定过程中粒度选择与结果修正提供理论参考。 展开更多
关键词 软硬煤屑 粒径 瓦斯解吸扩散规律 孔隙结构
下载PDF
颗粒煤的多扩散系数瓦斯解吸模型及扩散参数反演研究 被引量:10
3
作者 王登科 王洪磊 魏建平 《中国安全生产科学技术》 CAS CSCD 北大核心 2016年第7期10-15,共6页
为研究颗粒煤瓦斯解吸规律,基于Fick定律建立了颗粒煤的多扩散系数瓦斯解吸模型,完成了颗粒煤瓦斯解吸模型的数值试验。引入了非负约束最小二乘法反演算法(NNLS),通过试验数据反演得出颗粒煤的扩散参数的B谱,从而确定出颗粒煤瓦斯扩散系... 为研究颗粒煤瓦斯解吸规律,基于Fick定律建立了颗粒煤的多扩散系数瓦斯解吸模型,完成了颗粒煤瓦斯解吸模型的数值试验。引入了非负约束最小二乘法反演算法(NNLS),通过试验数据反演得出颗粒煤的扩散参数的B谱,从而确定出颗粒煤瓦斯扩散系数D的准确范围。研究结果表明:颗粒煤瓦斯解吸符合Fick扩散定律,颗粒煤的多扩散系数瓦斯解吸模型能很好地解决单一扩散系数模型的扩散系数随时间衰减的问题,准确反映了颗粒煤瓦斯解吸规律,单一扩散系数瓦斯解吸模型只是多扩散系数瓦斯解吸模型的一个特例;NNLS是一种有效的反演算法,利用NNLS方法可以准确反演出颗粒煤瓦斯解吸过程中的扩散参数的B谱,通过B谱可方便计算出颗粒煤的瓦斯扩散系数。 展开更多
关键词 颗粒煤 瓦斯解吸 扩散系数瓦斯解吸模型 非负约束最小二乘法 扩散系数反演
下载PDF
受载煤岩瓦斯多扩散系数解吸模型研究 被引量:1
4
作者 韩承强 《内蒙古煤炭经济》 2022年第1期5-8,共4页
为研究受载原煤瓦斯解吸规律,利用含瓦斯煤岩力学性质测试系统,在恒温的三轴加载条件下,进行了受载原煤加载-吸附-解吸-加载直至煤样破坏实验,建立了原煤的多扩散系数瓦斯解吸模型。基于非负约束最小二乘法反演算法(NNLS),通过试验数据... 为研究受载原煤瓦斯解吸规律,利用含瓦斯煤岩力学性质测试系统,在恒温的三轴加载条件下,进行了受载原煤加载-吸附-解吸-加载直至煤样破坏实验,建立了原煤的多扩散系数瓦斯解吸模型。基于非负约束最小二乘法反演算法(NNLS),通过试验数据反演得出受载原煤的扩散参数B谱。研究结果表明:受载原煤一小时瓦斯累计解吸量在弹性阶段随轴向应力增大而减小,在塑性阶段随应力增加有小幅度回升,在煤岩破坏后急速增大。受载原煤瓦斯解吸多扩散系数模型能准确反映受载原煤瓦斯解吸规律,B谱可反映出受载原煤内部变化以及其瓦斯解吸规律情况。该模型可更准确合理地描述煤层内瓦斯运移过程。 展开更多
关键词 受载原煤 瓦斯解吸 扩散系数瓦斯解吸模型 非负约束最小二乘法 瓦斯累计解吸
下载PDF
低温环境瓦斯扩散试验及不同模型契合度分析 被引量:2
5
作者 马兴莹 王兆丰 +2 位作者 尉瑞 周晓庆 李乾荣 《中国安全科学学报》 CAS CSCD 北大核心 2022年第3期123-130,共8页
为了有效治理煤与瓦斯突出灾害,基于瓦斯扩散系数在煤层瓦斯含量测定中的重要性,采用自主研发的含瓦斯煤冷冻响应装置,测定温度为0、-10、-20、-30℃,吸附平衡压力为0.5、1.0、1.5 MPa下的瓦斯解吸扩散量,并对比经典扩散模型和2种动扩... 为了有效治理煤与瓦斯突出灾害,基于瓦斯扩散系数在煤层瓦斯含量测定中的重要性,采用自主研发的含瓦斯煤冷冻响应装置,测定温度为0、-10、-20、-30℃,吸附平衡压力为0.5、1.0、1.5 MPa下的瓦斯解吸扩散量,并对比经典扩散模型和2种动扩散模型与试验数据的契合度。研究结果表明:低温影响煤体表面自由能升高,瓦斯分子热运动能力降低,表现出低温抑制煤中瓦斯解吸扩散;3种扩散模型模拟数据与试验数据对比,2种动扩散模型优于经典扩散模型,且2种动扩散模型中指数函数模型更优于幂函数模型;瓦斯扩散系数受温度影响均经历急速下降和缓慢下降2个阶段。 展开更多
关键词 低温环境 瓦斯解吸扩散 扩散模型 契合度 扩散系数
下载PDF
温度-粒径耦合作用下煤粒瓦斯动扩散系数影响研究
6
作者 姚栋 袁梅 +3 位作者 王玉丽 何季民 易双霞 秦丽杉 《矿业研究与开发》 CAS 北大核心 2024年第10期159-166,共8页
为探究温度-粒径耦合作用对煤粒瓦斯解吸扩散的影响,开展了不同温度和粒径下的瓦斯解吸试验,并构建了温度-粒径耦合动扩散模型,据此分析了两者耦合作用对瓦斯解吸扩散的影响。研究结果表明:(1)瓦斯解吸量随粒径减小而增大,且煤粒径越小... 为探究温度-粒径耦合作用对煤粒瓦斯解吸扩散的影响,开展了不同温度和粒径下的瓦斯解吸试验,并构建了温度-粒径耦合动扩散模型,据此分析了两者耦合作用对瓦斯解吸扩散的影响。研究结果表明:(1)瓦斯解吸量随粒径减小而增大,且煤粒径越小,瓦斯解吸扩散初期越显著;(2)温度越高,瓦斯解吸量越多,每升高10℃,瓦斯解吸量有10%~17%的增幅,并随煤粒增大,增幅越大;(3)动扩散模型分析得出初始扩散系数(D_(0))和衰减系数(β)随温度升高均变大,而随粒径从0.250 mm增大到0.875 mm,D_(0)升高了2.8倍,β降低了37%;(4)瓦斯解吸扩散过程受温度和煤粒径的影响,温度主要影响分子活性和孔隙状态,而粒径主要影响气体含量和孔隙分布,且粒径变化对这一过程的影响更大。研究结果丰富了瓦斯解吸扩散理论,并为瓦斯灾害有效防治提供了理论参考。 展开更多
关键词 温度-粒径耦合作用 瓦斯解吸扩散 扩散系数扩散模型
原文传递
Kinetic characteristics of coal gas desorption based on the pulsating injection 被引量:4
7
作者 Ni Guanhua Lin Baiquan +3 位作者 Zhai Cheng Li Quangui Peng Shen Li Xianzhong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期631-636,共6页
In order to understand the kinetic characteristics of coal gas desorption based on the pulsating injection (PI), the research experimentally studied the kinetic process of methane desorption in terms of the PI and h... In order to understand the kinetic characteristics of coal gas desorption based on the pulsating injection (PI), the research experimentally studied the kinetic process of methane desorption in terms of the PI and hydrostatic injection (HI). The results show that the kinetic curves of methane desorption based on PI and HI are consistent with each other, and the diffusion model can best describe the characteristics of meth- ane desorption. Initial velocity, diffusion capacity and ultimate desorption amount of methane desorption after P! are greater than those after HI, and the ultimate desorption amount increases by 16.7-39.7%. Methane decay rate over the time is less than that of the HI. The PI influences the diffusion model param- eters, and it makes the mass transfer Biot number B'_i decrease and the mass transfer Fourier series F'_0 increase. As a result, PI makes the methane diffusion resistance in the coal smaller, methane diffusion rate greater, mass transfer velocity faster and the disturbance range of methane concentration wider than HI. Therefore, the effect of methane desorption based on PI is better than that of HI. 展开更多
关键词 Pulsating injection Hydrostatic injection Methane desorption Kinetic characteristics
下载PDF
Physical characteristics of high-rank coal reservoirs in different coal-body structures and the mechanism of coalbed methane production 被引量:5
8
作者 ZHANG XiaoDong DU ZhiGang LI PengPeng 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第2期246-255,共10页
The physical characteristics of coal reservoirs are important for evaluating the potential for gas desorption, diffusion, and seepage during coalbed methane (CBM) production, and influence the performance of CBM wel... The physical characteristics of coal reservoirs are important for evaluating the potential for gas desorption, diffusion, and seepage during coalbed methane (CBM) production, and influence the performance of CBM wells. Based on data from mercury injection experiments, low-temperature liquid nitrogen adsorption, isothermal adsorption, initial velocity tests of methane diffusion, and gas natural desorption data from a CBM field, herein the physical characteristics of reservoirs of high-rank coals with different coal-body structures are described, including porosity, adsorption/desorption, diffusion, and seepage. Geometric models are constructed for these reservoirs. The modes of diffusion are discussed and a comprehensive diffusion-seepage model is constructed. The following conclusions were obtained. First, the pore distribution of tectonically deformed coal is different from that of normal coal. Compared to normal coal, all types of pore, including micropores (〈10 nm), transitional pores (10-100 nm), mesopores (100-1000 nm), and macropores (〉1000 nm), are more abundant in tectonically deformed coal, especially mesopores and macropores. The increase in pore abundance is greater with increasing tectonic deformation of coal; in addition, the pore connectivity is altered. These are the key factors causing differences in other reservoir physical characteristics, such as adsorption/desorption and diffusion in coals with different coal-body structures. Second, normal and cataclastic coals mainly contain micropores. The lack of macropores and its bad connectivity limit gas desorption and diffusion during the early stage of CBM production. However, the good connectivity of micropores is favorable for gas desorption and diffusion in later gas production stage. Thus, because of the slow decline in the rate of gas desorption, long-term gas production can easily be obtained from these reservoirs. Third, under natural conditions the adsorption/desorption properties of granulated and mylonitized coal are good, and the diffusion ability is also enhanced. However, for in situ reservoir conditions, the high dependence of reservoir permeability on stress results in a weak seepage of gas; thus, desorption and diffusion is limited. Fourth, during gas production, the pore range in which transitional diffusion takes place always increases, but that for Fick diffusion decreases. This is a reason for the reduction in diffusion capacity, in which micropores and transitional pores are the primary factors limiting gas diffusion. Finally, the proposed comprehensive model of CBM production under in situ reservoir conditions elucidates the key factors limiting gas production, which is helpful for selection of reservoir stimulation methods. 展开更多
关键词 High-rank coal Coal-body structure Reservoir physical characteristics Gas production mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部