Let H be a cosemisimple Hopf algebra over a field k, and π : A→ H be a surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A is Galois over its coinvariants B=LH Ker π and B is a s...Let H be a cosemisimple Hopf algebra over a field k, and π : A→ H be a surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A is Galois over its coinvariants B=LH Ker π and B is a sub-Hopf algebra of A, then A is itself a Hopf algebra. This generalizes a result of Cegarra [3] on group-graded algebras.展开更多
文摘Let H be a cosemisimple Hopf algebra over a field k, and π : A→ H be a surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A is Galois over its coinvariants B=LH Ker π and B is a sub-Hopf algebra of A, then A is itself a Hopf algebra. This generalizes a result of Cegarra [3] on group-graded algebras.