Aiming to resolve the technical problems of lower gas concentrations and a reduced effective drainage period caused by gas-drainage borehole fracture development, a flexible gel (FG) gas-drainage borehole sealing ma...Aiming to resolve the technical problems of lower gas concentrations and a reduced effective drainage period caused by gas-drainage borehole fracture development, a flexible gel (FG) gas-drainage borehole sealing material was developed that adapts to borehole deformation. In this study, based on orthogonal tests, the effect of the ratio of material to water, stirring time and stirring speed on the viscosity, filtration property, water retention and pumpability of the FG were studied. The results indicate that the stirring speed, ratio of material to water and stirring time in turn increased the viscosity and the ratio of material to water, stirring time and stirring speed enhanced the filtration property and water retention. The FG pumps smoothly and achieves the optimal state of high water retention, low fluid loss and low viscosity when the ratio of material to water is 1:10, the stirring speed is 800 r/min, and the stirring time is 12 min. The field test results indicate that, after using the FG, the average drainage gas concentration increases by 25.9% and 27.6g and the average negative pressure of extraction increases by 2.7 kPa and 3.5 kPa com- pared with expansive cement and polyurethane, respectively.展开更多
After their experimental data were re-explained in terms of the maximum-effective-moment (MEM) criterion, Gomez-Rivas and Griera (2015) challenge the validity of the MEM-Criterion in terms of shear fractures, whic...After their experimental data were re-explained in terms of the maximum-effective-moment (MEM) criterion, Gomez-Rivas and Griera (2015) challenge the validity of the MEM-Criterion in terms of shear fractures, which have mixed up with shear fractures and shear bands. The two features are similar in appearance but different in deformation mechanism (s). The MEM-criterion proves that ±55° to σ1era are the maximum effective moment directions and the shear bands that formed by mate- rial-line (beddings or fabrics) rotation mechanism have a constant conjugate angle of 110°. Theoretically, the 55° or 110° is a material-invariant, and practically, a statistic-invariant or preferred direction with average deviation of -10°. By this angle, shear bands can be easily recognized from shear fractures with conjugate angle never over 90°. The High-strain deformation in the lozenges usually predates the surrounding shear bands. Two stress states can not coexisted simultaneously in the same place and the resolving cr1' normal to the related shear zone represents 0-100% deformation partitioning, depending on the original kinematic vorticity of the shear zones.展开更多
Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this se...Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this semiconductor, Marcus electron transfer theory and the embedded model, which can give small intramolecular reorganization energies, were employed. The calculated results were in good agreement with the experimental values, so the above computing model is appropriate to assess the electrical property of TTF. On this basis, we predicted the charge mobility of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) crystals, for which the molecular structure is similar to TTF. The calculated results indicated that BDH-TTP is a p-type material, which has a better performance than TTF in hole transfer due to larger hole coupling and the smaller hole injection barrier. In addition, the direct coupling (DC) and the site energy correction (SEC) methods were used to calculate the charge transfer integrals. Although the results were slightly different, the qualitative trends were the same. Furthermore we took into account the anisotropic transfer properties of TTF and BDH-TTF, since obviously the mobilities along one dimension are larger than those along three dimensions. Finally, natural bond orbital analysis was used to study the interactions in all of the dimers.展开更多
基金supported by the Central Universities Special Funds for Fundamental Research Funds of the China University of Mining and Technology (No. 2013ZDP01)the National Natural Science Foundation of China (Nos. 51274195 and U1361106)+3 种基金the Natural Science Foundation of Jiangsu Province (No. BK2012571)the National Major Scientific Instrument and Equipment Development Project (No. 2013YQ17046309)the Program for New Century Excellent Talents in University (No. NCET-12-0959)the Qing Lan Project
文摘Aiming to resolve the technical problems of lower gas concentrations and a reduced effective drainage period caused by gas-drainage borehole fracture development, a flexible gel (FG) gas-drainage borehole sealing material was developed that adapts to borehole deformation. In this study, based on orthogonal tests, the effect of the ratio of material to water, stirring time and stirring speed on the viscosity, filtration property, water retention and pumpability of the FG were studied. The results indicate that the stirring speed, ratio of material to water and stirring time in turn increased the viscosity and the ratio of material to water, stirring time and stirring speed enhanced the filtration property and water retention. The FG pumps smoothly and achieves the optimal state of high water retention, low fluid loss and low viscosity when the ratio of material to water is 1:10, the stirring speed is 800 r/min, and the stirring time is 12 min. The field test results indicate that, after using the FG, the average drainage gas concentration increases by 25.9% and 27.6g and the average negative pressure of extraction increases by 2.7 kPa and 3.5 kPa com- pared with expansive cement and polyurethane, respectively.
基金supported financially by the Project from Geological Survey of China(Grant No.12120115027101)
文摘After their experimental data were re-explained in terms of the maximum-effective-moment (MEM) criterion, Gomez-Rivas and Griera (2015) challenge the validity of the MEM-Criterion in terms of shear fractures, which have mixed up with shear fractures and shear bands. The two features are similar in appearance but different in deformation mechanism (s). The MEM-criterion proves that ±55° to σ1era are the maximum effective moment directions and the shear bands that formed by mate- rial-line (beddings or fabrics) rotation mechanism have a constant conjugate angle of 110°. Theoretically, the 55° or 110° is a material-invariant, and practically, a statistic-invariant or preferred direction with average deviation of -10°. By this angle, shear bands can be easily recognized from shear fractures with conjugate angle never over 90°. The High-strain deformation in the lozenges usually predates the surrounding shear bands. Two stress states can not coexisted simultaneously in the same place and the resolving cr1' normal to the related shear zone represents 0-100% deformation partitioning, depending on the original kinematic vorticity of the shear zones.
基金supported by the Key Laboratory for New Molecule Material DesignFunction of Tianshui Normal University+3 种基金the Scientific Research Projects of Middle-agedYoung Researchers in Tianshui Normal University (TSA1116)the National Natural Science Foundation of China (21071110)the Fund of the Educational Commission of Gansu Province (1108-03)
文摘Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this semiconductor, Marcus electron transfer theory and the embedded model, which can give small intramolecular reorganization energies, were employed. The calculated results were in good agreement with the experimental values, so the above computing model is appropriate to assess the electrical property of TTF. On this basis, we predicted the charge mobility of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) crystals, for which the molecular structure is similar to TTF. The calculated results indicated that BDH-TTP is a p-type material, which has a better performance than TTF in hole transfer due to larger hole coupling and the smaller hole injection barrier. In addition, the direct coupling (DC) and the site energy correction (SEC) methods were used to calculate the charge transfer integrals. Although the results were slightly different, the qualitative trends were the same. Furthermore we took into account the anisotropic transfer properties of TTF and BDH-TTF, since obviously the mobilities along one dimension are larger than those along three dimensions. Finally, natural bond orbital analysis was used to study the interactions in all of the dimers.