期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CNN-ISS遥感影像分类的瓦片边缘效应及消除方案 被引量:2
1
作者 段增强 刘杰东 +2 位作者 鹿鸣 孔祥斌 杨娜 《农业工程学报》 EI CAS CSCD 北大核心 2021年第2期209-217,共9页
应用卷积神经网络语义分割模型(Image Semantic Segmentation based on Convolutional Neural Network,CNN-ISS)进行遥感影像分类时,需将大幅影像分解为特定大小瓦片影像,并将其作为CNN-ISS处理对象,这一过程破坏了位于瓦片边缘处地物... 应用卷积神经网络语义分割模型(Image Semantic Segmentation based on Convolutional Neural Network,CNN-ISS)进行遥感影像分类时,需将大幅影像分解为特定大小瓦片影像,并将其作为CNN-ISS处理对象,这一过程破坏了位于瓦片边缘处地物的完整几何及纹理特征,从而影响瓦片边缘处地物的识别效果,即瓦片边缘效应。该研究以DeepLab V3为CNN-ISS核心模型,对唐山农村地物进行语义分割,定量分析了分类结果的瓦片边缘效应,并提出了5个消除此效应的后处理方案。结果表明:像素分类精度与像素到瓦片边缘距离正相关,瓦片边缘处错误率最高达6.93%,中央处错误率最低为3.52%,存在瓦片边缘效应;采用该研究提出的瓦片边缘效应消除方案后,整幅影像的总精度(Pixel Accuracy,PA)、均交并比(Mean Intersection over Union,mIoU)和Kappa系数均有提升,最高分别提升0.40、1.97个百分点和0.0122。在不改变CNN-ISS核心模型条件下,通过该研究的瓦片边缘效应消除后处理方案,可有效提升遥感影像分类精度,尤其针对复杂异构体和线状地物精度提升效果更好。 展开更多
关键词 遥感 卷积神经网络 语义分割 影像分类 瓦片边缘效应
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部