We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of...We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.展开更多
ZnO-Bi2O3-based varistor ceramics doped with EU2O3 in a range from 0 to 0.4% were obtained by high-energy ball milling and fired at 900-1000 ℃ for 2 h. XRD and SEM were applied to determine the phases and microstruct...ZnO-Bi2O3-based varistor ceramics doped with EU2O3 in a range from 0 to 0.4% were obtained by high-energy ball milling and fired at 900-1000 ℃ for 2 h. XRD and SEM were applied to determine the phases and microstructure of the varistor ceramics. A DC parameter instrument was applied to investigate the electronic properties and V-I characteristics. The XRD analysis of Eu2O3-doped ZnO-Bi2O3-based varistor ceramics shows that the ZnO, Eu-containing Bi-rich, Zn7Sb2O12-type spinel and Zn2Bi3Sb3O14-type which is the pyrochlore phase are present. With increasing Eu2O3 content, the average size of ZnO grain firstly decreases and then increases. The grain boundary defect model was particularly used to explain the excellent nonlinearity of ZnO-Bi2O3-based varistor ceramics with the addition of0.1% Eu2O3 and sintered at 950 ℃.展开更多
基金Funded by the Natural Science Foundation of China (No. 50872001 and No. 50642038)the Scientific Research Foundation of Education Ministry of Anhui Province (No. 2005KJ224 and No. KJ2007B132)the Graduate Student Innovation Programs of Anhui University (No. 20072006)
文摘We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.
基金Projects(BK2011243,BK2012156) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(20123227120021) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China+3 种基金Project(KFJJ201105) supported by the Opening Project of State key Laboratory of Electronic Thin Films and Integrated Devices,ChinaProject(10KJD430002) supported by the Universities Natural Science Research Project of Jiangsu Province,ChinaProject(13KJB430006) supported by the Application Program for Basic Research of Changzhou,ChinaProject supported by the Industrial Center of Jiangsu University Undergraduate Practice-Innovation Training Project,China
文摘ZnO-Bi2O3-based varistor ceramics doped with EU2O3 in a range from 0 to 0.4% were obtained by high-energy ball milling and fired at 900-1000 ℃ for 2 h. XRD and SEM were applied to determine the phases and microstructure of the varistor ceramics. A DC parameter instrument was applied to investigate the electronic properties and V-I characteristics. The XRD analysis of Eu2O3-doped ZnO-Bi2O3-based varistor ceramics shows that the ZnO, Eu-containing Bi-rich, Zn7Sb2O12-type spinel and Zn2Bi3Sb3O14-type which is the pyrochlore phase are present. With increasing Eu2O3 content, the average size of ZnO grain firstly decreases and then increases. The grain boundary defect model was particularly used to explain the excellent nonlinearity of ZnO-Bi2O3-based varistor ceramics with the addition of0.1% Eu2O3 and sintered at 950 ℃.