The Simultaneous Saccharification and Fermentation (SSF) of alkali-acid pretreated sugarcane trash to ethanol was optimized using commercial cellulase and Saccharomyces cerevisiae TISTR 5596 cells. Substrate concent...The Simultaneous Saccharification and Fermentation (SSF) of alkali-acid pretreated sugarcane trash to ethanol was optimized using commercial cellulase and Saccharomyces cerevisiae TISTR 5596 cells. Substrate concentration (12.5% w/v, 15% w/v, 17.5% w/v and 20% w/v), enzyme loading (25 FPU/g Dry Substrate (DS), 50 FPU/g DS and 75 FPU/g DS), and temperature (30 ~C, 35 ~C and 40 ~C) were evaluated. The SSF optimal conditions for alkali-acid pretreated sugarcane trash were 20% w/v of substrate concentration, enzyme loading 50 FPU/g DS, temperature 35 ~C, initial pH 5.0 and yeast inoculum 107 cells/mL. Under the above optimal conditions, ethanol concentration was possible to reach in the range between 50.14 g/L and 55.08 g/L at 96 hrs and 144 hrs, respectively. This study could establish the effective utilization of sugarcane trash for bioethanol production using optimized fermentation parameters.展开更多
文摘The Simultaneous Saccharification and Fermentation (SSF) of alkali-acid pretreated sugarcane trash to ethanol was optimized using commercial cellulase and Saccharomyces cerevisiae TISTR 5596 cells. Substrate concentration (12.5% w/v, 15% w/v, 17.5% w/v and 20% w/v), enzyme loading (25 FPU/g Dry Substrate (DS), 50 FPU/g DS and 75 FPU/g DS), and temperature (30 ~C, 35 ~C and 40 ~C) were evaluated. The SSF optimal conditions for alkali-acid pretreated sugarcane trash were 20% w/v of substrate concentration, enzyme loading 50 FPU/g DS, temperature 35 ~C, initial pH 5.0 and yeast inoculum 107 cells/mL. Under the above optimal conditions, ethanol concentration was possible to reach in the range between 50.14 g/L and 55.08 g/L at 96 hrs and 144 hrs, respectively. This study could establish the effective utilization of sugarcane trash for bioethanol production using optimized fermentation parameters.