An integrated system for assembly planning and design (INSAPS) is presented in which product data can be exchanged between assembly planning and assembly design on the basis of standard for exchange of product data mo...An integrated system for assembly planning and design (INSAPS) is presented in which product data can be exchanged between assembly planning and assembly design on the basis of standard for exchange of product data model (STEP). The system consists of CAD system, product modeling system, assembly planning system. The product model is organized according to the STEP, uses mostly the entities of IR (integrated resources) and partly self defined entities which is necessary for assembly planning. A simple method of assembly sequence generation is presented which is suitable for complex assembly planning. The generated assembly sequences are evaluated considering the optimization of total assembly time. The results of assembly planning are feedback to the stage of assembly design to improve design.展开更多
In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to ...In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).展开更多
Optimization of long-term mine production scheduling in open pit mines deals with the management of cash flows, typically in the order of hundreds of millions of dollars. Conventional mine scheduling utilizes optimiza...Optimization of long-term mine production scheduling in open pit mines deals with the management of cash flows, typically in the order of hundreds of millions of dollars. Conventional mine scheduling utilizes optimization methods that are not capable of accounting for inherent technical uncertainties such as uncertainty in the expected ore/metal supply from the underground, acknowledged to be the most critical factor. To integrate ore/metal uncertainty into the optimization of mine production scheduling a stochastic integer programming(SIP) formulation is tested at a copper deposit. The stochastic solution maximizes the economic value of a project and minimizes deviations from production targets in the presence of ore/metal uncertainty. Unlike the conventional approach, the SIP model accounts and manages risk in ore supply, leading to a mine production schedule with a 29% higher net present value than the schedule obtained from the conventional, industry-standard optimization approach, thus contributing to improving the management and sustainable utilization of mineral resources.展开更多
Steel-making and continuous/ingot casting are the key processes of modern iron and steel enterprises. Bilevel programming problems(BLPPs) are the optimization problems with hierarchical structure. In steel-making prod...Steel-making and continuous/ingot casting are the key processes of modern iron and steel enterprises. Bilevel programming problems(BLPPs) are the optimization problems with hierarchical structure. In steel-making production, the plan is not only decided by the steel-making scheduling, but also by the transportation equipment.This paper proposes a genetic algorithm to solve continuous and ingot casting scheduling problems. Based on the characteristics of the problems involved, a genetic algorithm is proposed for solving the bilevel programming problem in steel-making production. Furthermore, based on the simplex method, a new crossover operator is designed to improve the efficiency of the genetic algorithm. Finally, the convergence is analyzed. Using actual data the validity of the proposed algorithm is proved and the application results in the steel plant are analyzed.展开更多
Commodity prices have fallen sharply due to the global financial crisis. This has adversely affected the viability of some mining projects, including leading to the possibility of bankruptcy for some companies. These ...Commodity prices have fallen sharply due to the global financial crisis. This has adversely affected the viability of some mining projects, including leading to the possibility of bankruptcy for some companies. These price falls reflect uncertainties and risks associated with mining projects. In recent years, much work has been published related to the application of real options pricing theory to value life-of-mine plans in response to long term financial uncertainty and risk. However, there are uncertainties and risks associated with medium/short-term mining operations. Real options theory can also be applied to tactical decisions involving uncertainties and risks. This paper will investigate the application of real options in the mining industry and present a methodology developed at University of Queensland, Australia, for integrating real options into medium/short-term mine planning and production scheduling. A case study will demonstrate the validity and usefulness of the methodology and techniques developed.展开更多
Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it pos...Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it poses become an NP-hard problem.This problem has major practical significance because the effectiveness of the schedules obtained has strong economical impact for any mining project.Despite of the rapid theoretical and technical advances in this field,heuristics is still the only viable approach for large scale industrial applications.This work presents an approach combining genetic algorithms(GAs) and Lagrangian relaxation(LR) to optimally determine the CLTPSP of open pit mines.GAs are stochastic,parallel search algorithms based on the natural selection and the process of evolution.LR method is known for handling large-scale separable problems; however,the convergence to the optimal solution can be slow.The proposed Lagrangian relaxation and genetic algorithms(LR-GAs) combines genetic algorithms into Lagrangian relaxation method to update the Lagrangian multipliers.This approach leads to improve the performance of Lagrangian relaxation method in solving CLTPSP.Numerical results demonstrate that the LR method using GAs to improve its performance speeding up the convergence.Subsequently,highly near-optimal solution to the CLTPSP can be achieved by the LR-GAs.展开更多
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ...One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.展开更多
The complexity of an open pit production scheduling problem is increased by grade uncertainty. A method is presented to calculate the cost of uncertainty in a production schedule based on deviations from the target pr...The complexity of an open pit production scheduling problem is increased by grade uncertainty. A method is presented to calculate the cost of uncertainty in a production schedule based on deviations from the target production. A mixed integer linear programming algorithm is formulated to find the min- ing sequence of blocks from a predefined pit shell and their respective destinations, with two objectives: to maximize the net present value of the operation and to minimize the cost of uncertainty. An efficient clustering technique reduces the number of var/ables to make the problem tractable. Also, the parameters that control the importance of uncertainty in the optimization problem are studied. The minimum annual mining capacity in presence of grade uncertainty is assessed. The method is illustrated with an oil sand deposit in northern Alberta.展开更多
Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITO...Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.展开更多
The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied....The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.展开更多
The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tu...The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.展开更多
No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic al...No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.展开更多
The nature of production is time dominated based, it requires to manage the material supply, the product delivery, and the time of the process in an effective and efficient way. This paper posits the production behave...The nature of production is time dominated based, it requires to manage the material supply, the product delivery, and the time of the process in an effective and efficient way. This paper posits the production behaves as a dynamic system that requires a model to optimize the production scheduling with the flexibility of predictive settings and to give a holistic overview about the dynamic properties of the material and the product across the cycle time to the factory planner.展开更多
This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The pro...This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The problems in this class are NP-hard combinatorial problems, requiring a triple optimisation at the same time: allocation of resources to each line, production sequencing and production scheduling within each production line. They are ubiquitous to production and manufacturing environments. Due to nature of constraints, the length of solutions for the problem can be variable. To cope with this variability, new strategies for encoding chromosomes, crossover and mutation operations have been developed. Robustness of the proposed GA is demonstrated by a complex and realistic case study.展开更多
Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved ...Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.展开更多
Since the mid-1980s Chinese calligraphy art has undergone a radical change and has opened itself to experimentation. Nowadays in China this artistic revolution has sparked a vivid debate among the art critics on three...Since the mid-1980s Chinese calligraphy art has undergone a radical change and has opened itself to experimentation. Nowadays in China this artistic revolution has sparked a vivid debate among the art critics on three main topics: (1) definition of the phenomenon; (2) analysis of its nature; and (3) classification of the artistic production. In this article, all these aspects are analysed in order to give a comprehensive view of the present theoretical discussion and of its future development.展开更多
A novel rule-based model for multi-stage multi-product scheduling problem(MMSP)in batch plants with parallel units is proposed.The scheduling problem is decomposed into two sub-problems of order assignment and order s...A novel rule-based model for multi-stage multi-product scheduling problem(MMSP)in batch plants with parallel units is proposed.The scheduling problem is decomposed into two sub-problems of order assignment and order sequencing.Firstly,hierarchical scheduling strategy is presented for solving the former sub-problem,where the multi-stage multi-product batch process is divided into multiple sequentially connected single process stages,and then the production of orders are arranged in each single stage by using forward order assignment strategy and backward order assignment strategy respectively according to the feature of scheduling objective.Line-up competition algorithm(LCA)is presented to find out optimal order sequence and order assignment rule,which can minimize total flow time or maximize total weighted process time.Computational results show that the proposed approach can obtain better solutions than those of the literature for all scheduling problems with more than 10 orders.Moreover,with the problem size increasing,the solutions obtained by the proposed approach are improved remarkably.The proposed approach has the potential to solve large size MMSP.展开更多
This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage ti...This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.展开更多
This paper summarizes the reforms happened in the Chinese electric power sector in recent years.Although some major measures for the electricity reforms have made progress in a phase sense,including direct trading bet...This paper summarizes the reforms happened in the Chinese electric power sector in recent years.Although some major measures for the electricity reforms have made progress in a phase sense,including direct trading between major electricity producers and consumers,energy-saving power dispatch and the increase of electricity prices,the deployment of these reforms into practice is facing more difficulties than expected.The author also gives an outlook for the electric power reform in the 12th Five-Year Plan period,and deems that the government may not take substantial steps to reform the electricity system.Reforms on the electricity system will continue in a more moderate manner and focus on electricity prices.展开更多
文摘An integrated system for assembly planning and design (INSAPS) is presented in which product data can be exchanged between assembly planning and assembly design on the basis of standard for exchange of product data model (STEP). The system consists of CAD system, product modeling system, assembly planning system. The product model is organized according to the STEP, uses mostly the entities of IR (integrated resources) and partly self defined entities which is necessary for assembly planning. A simple method of assembly sequence generation is presented which is suitable for complex assembly planning. The generated assembly sequences are evaluated considering the optimization of total assembly time. The results of assembly planning are feedback to the stage of assembly design to improve design.
基金Project(ZR2014FM036)supported by Shandong Provincial Natural Science Foundation of ChinaProject(ZR2010FZ001)supported by the Key Program of Shandong Provincial Natural Science Foundation of China
文摘In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).
基金funded from the National Science and Engineering Research Council of Canada,Collaborative R&D Grant CRDPJ 335696 with BHP Billiton and NSERC Discovery Grant 239019 to R. Dimitrakopoulos
文摘Optimization of long-term mine production scheduling in open pit mines deals with the management of cash flows, typically in the order of hundreds of millions of dollars. Conventional mine scheduling utilizes optimization methods that are not capable of accounting for inherent technical uncertainties such as uncertainty in the expected ore/metal supply from the underground, acknowledged to be the most critical factor. To integrate ore/metal uncertainty into the optimization of mine production scheduling a stochastic integer programming(SIP) formulation is tested at a copper deposit. The stochastic solution maximizes the economic value of a project and minimizes deviations from production targets in the presence of ore/metal uncertainty. Unlike the conventional approach, the SIP model accounts and manages risk in ore supply, leading to a mine production schedule with a 29% higher net present value than the schedule obtained from the conventional, industry-standard optimization approach, thus contributing to improving the management and sustainable utilization of mineral resources.
基金Supported by the Educational Commission of Liaoning Province Science and Technology Research Projects(L2013237)
文摘Steel-making and continuous/ingot casting are the key processes of modern iron and steel enterprises. Bilevel programming problems(BLPPs) are the optimization problems with hierarchical structure. In steel-making production, the plan is not only decided by the steel-making scheduling, but also by the transportation equipment.This paper proposes a genetic algorithm to solve continuous and ingot casting scheduling problems. Based on the characteristics of the problems involved, a genetic algorithm is proposed for solving the bilevel programming problem in steel-making production. Furthermore, based on the simplex method, a new crossover operator is designed to improve the efficiency of the genetic algorithm. Finally, the convergence is analyzed. Using actual data the validity of the proposed algorithm is proved and the application results in the steel plant are analyzed.
文摘Commodity prices have fallen sharply due to the global financial crisis. This has adversely affected the viability of some mining projects, including leading to the possibility of bankruptcy for some companies. These price falls reflect uncertainties and risks associated with mining projects. In recent years, much work has been published related to the application of real options pricing theory to value life-of-mine plans in response to long term financial uncertainty and risk. However, there are uncertainties and risks associated with medium/short-term mining operations. Real options theory can also be applied to tactical decisions involving uncertainties and risks. This paper will investigate the application of real options in the mining industry and present a methodology developed at University of Queensland, Australia, for integrating real options into medium/short-term mine planning and production scheduling. A case study will demonstrate the validity and usefulness of the methodology and techniques developed.
文摘Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it poses become an NP-hard problem.This problem has major practical significance because the effectiveness of the schedules obtained has strong economical impact for any mining project.Despite of the rapid theoretical and technical advances in this field,heuristics is still the only viable approach for large scale industrial applications.This work presents an approach combining genetic algorithms(GAs) and Lagrangian relaxation(LR) to optimally determine the CLTPSP of open pit mines.GAs are stochastic,parallel search algorithms based on the natural selection and the process of evolution.LR method is known for handling large-scale separable problems; however,the convergence to the optimal solution can be slow.The proposed Lagrangian relaxation and genetic algorithms(LR-GAs) combines genetic algorithms into Lagrangian relaxation method to update the Lagrangian multipliers.This approach leads to improve the performance of Lagrangian relaxation method in solving CLTPSP.Numerical results demonstrate that the LR method using GAs to improve its performance speeding up the convergence.Subsequently,highly near-optimal solution to the CLTPSP can be achieved by the LR-GAs.
文摘One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.
文摘The complexity of an open pit production scheduling problem is increased by grade uncertainty. A method is presented to calculate the cost of uncertainty in a production schedule based on deviations from the target production. A mixed integer linear programming algorithm is formulated to find the min- ing sequence of blocks from a predefined pit shell and their respective destinations, with two objectives: to maximize the net present value of the operation and to minimize the cost of uncertainty. An efficient clustering technique reduces the number of var/ables to make the problem tractable. Also, the parameters that control the importance of uncertainty in the optimization problem are studied. The minimum annual mining capacity in presence of grade uncertainty is assessed. The method is illustrated with an oil sand deposit in northern Alberta.
文摘Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.
基金supported by the National Key Research and Development Program of China (No.2020YFB1710500)the National Natural Science Foundation of China(No.51805253)the Fundamental Research Funds for the Central Universities(No. NP2020304)
文摘The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202),the National Natural Science Foundation of China(61174118)+2 种基金the National High-Tech Research and Development Program of China(2012AA040307)Shanghai Key Technologies R&D program(12dz1125100)Shanghai Leading Academic Discipline Project(B504)
文摘The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.
基金Project 60304016 supported by the National Natural Science Foundation of China
文摘No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.
文摘The nature of production is time dominated based, it requires to manage the material supply, the product delivery, and the time of the process in an effective and efficient way. This paper posits the production behaves as a dynamic system that requires a model to optimize the production scheduling with the flexibility of predictive settings and to give a holistic overview about the dynamic properties of the material and the product across the cycle time to the factory planner.
文摘This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The problems in this class are NP-hard combinatorial problems, requiring a triple optimisation at the same time: allocation of resources to each line, production sequencing and production scheduling within each production line. They are ubiquitous to production and manufacturing environments. Due to nature of constraints, the length of solutions for the problem can be variable. To cope with this variability, new strategies for encoding chromosomes, crossover and mutation operations have been developed. Robustness of the proposed GA is demonstrated by a complex and realistic case study.
基金Supported by the National Natural Science Foundation of China (51075029)
文摘Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.
文摘Since the mid-1980s Chinese calligraphy art has undergone a radical change and has opened itself to experimentation. Nowadays in China this artistic revolution has sparked a vivid debate among the art critics on three main topics: (1) definition of the phenomenon; (2) analysis of its nature; and (3) classification of the artistic production. In this article, all these aspects are analysed in order to give a comprehensive view of the present theoretical discussion and of its future development.
基金Supported by the National Natural Science Foundation of China(21376185)
文摘A novel rule-based model for multi-stage multi-product scheduling problem(MMSP)in batch plants with parallel units is proposed.The scheduling problem is decomposed into two sub-problems of order assignment and order sequencing.Firstly,hierarchical scheduling strategy is presented for solving the former sub-problem,where the multi-stage multi-product batch process is divided into multiple sequentially connected single process stages,and then the production of orders are arranged in each single stage by using forward order assignment strategy and backward order assignment strategy respectively according to the feature of scheduling objective.Line-up competition algorithm(LCA)is presented to find out optimal order sequence and order assignment rule,which can minimize total flow time or maximize total weighted process time.Computational results show that the proposed approach can obtain better solutions than those of the literature for all scheduling problems with more than 10 orders.Moreover,with the problem size increasing,the solutions obtained by the proposed approach are improved remarkably.The proposed approach has the potential to solve large size MMSP.
基金Thailand Research Fund (Grant #MRG5480176)National Research University Project of Thailand Office of Higher Education Commission
文摘This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.
文摘This paper summarizes the reforms happened in the Chinese electric power sector in recent years.Although some major measures for the electricity reforms have made progress in a phase sense,including direct trading between major electricity producers and consumers,energy-saving power dispatch and the increase of electricity prices,the deployment of these reforms into practice is facing more difficulties than expected.The author also gives an outlook for the electric power reform in the 12th Five-Year Plan period,and deems that the government may not take substantial steps to reform the electricity system.Reforms on the electricity system will continue in a more moderate manner and focus on electricity prices.