The Jimo coast encompasses an area of 2157 km^2, and the ecosystem is valuable both socially and economically with regional fisheries substantially contributing to the value. A mass-balanced trophic model consisting o...The Jimo coast encompasses an area of 2157 km^2, and the ecosystem is valuable both socially and economically with regional fisheries substantially contributing to the value. A mass-balanced trophic model consisting of 15 functional ecological groups was developed for the coastal ecosystem using the Ecopath model in Ecopath with Ecosim(Ew E) software(version 6.4.3). The results of the model simulations indicated that the trophic levels of the functional groups varied between 1.0 and 3.76, and the total production of the system was estimated to be 5112.733 t km^(-2) yr^(-1) with a total energy transfer efficiency of 17.6%. The proportion of the total flow originating from detritus was estimated to be 48%, whereas that from primary producers was 52%, indicating that the grazing food chain dominated the energy flow. The ratio of total primary productivity to total respiration in the system was 3.78, and the connectivity index was 0.4. The fin cycling index and the mean path length of the energy flow were 4.92% and 2.57%, respectively, which indicated that the ecosystem exhibits relatively low maturity and stability. The mixed trophic impact(MTI) procedure suggested that the ecological groups at lower trophic levels dominated the feeding dynamics in the Jimo coastal ecosystem. Overfishing is thought to be the primary reason for the degeneration of the Jimo coastal ecosystem, resulting in a decline in the abundance of pelagic and demersal fish species and a subsequent shift to the predominance of lower-trophic-level functional groups. Finally, we offered some recommendations for improving current fishery management practices.展开更多
Segmental perforation is widely used for horizontal wells. However,the flow of fluid in porous media is a complex problem. Using the Fourier transform,principle of potential superposition,trigonometric function transf...Segmental perforation is widely used for horizontal wells. However,the flow of fluid in porous media is a complex problem. Using the Fourier transform,principle of potential superposition,trigonometric function transform,asymptotic analyses,a pressure solution of a pseudo steady-state flow model in 3D circular-boxed media has been established. Comparing with the productivity of vertical wells,an equivalence radius model can be obtained. Based on the model,a method of evaluating the productivity of segmental perforation horizontal well is presented by means of principle of superposition. It shows that the equivalence radius is different for various positions of horizontal wells; the output of both ends of horizontal wells is greater than the others under the same length of perforation interval; it is more important to obtain high productivity by increasing the length of perforation interval than enlarging the spacing between perforation intervals. The result of this research can be used to ascertain the yield of each perforated interval.展开更多
Animal habitat-use patterns cannot be isolated from scale issues. Consequently, multi-scale studies provide a complete characterization of ecological patterns that can further explain the observed variation. Liolaemus...Animal habitat-use patterns cannot be isolated from scale issues. Consequently, multi-scale studies provide a complete characterization of ecological patterns that can further explain the observed variation. Liolaemus constitutes the world's second most speciose lizard genus. In this study, we assessed the relationships between home range size and environmental variables at 3 different spatial scales. The study at a local and regional scale was focused on the habitat specialist Liolaemus multimaculatus. The lizard's home range was calculated using the minimum convex polygon method in populations from grassland sites of the coastal sand dunes of the Argentinean Pampas under 2 different conditions, with or without forestations of Acacia Iongifolia. On the other hand, at a geographical scale we considered the evolutionary implications of 20 species of Liolaemus. Home range size, phylogeny, ecological, environmental, and climatic data were ob- tained from the literature and remote sensing. L. multimaculatus home range varied from 12.66 to 570.00 m. Regionally, this species had smaller home ranges in forested habitats (X: 94.02 m2) com- pared with the non-forested sites (X: 219.78m2). Habitat structure, vegetation types, and food availability would explain the space use at finer scales. When the 20 species of Liolaernus were considered, high mean air temperature and broad thermal amplitudes showed an inverse relationship with home range size. Neither net primary productivity nor phylogeny was good predictors for home range variation at geographical scale. This study highlights the scale dependence of the explicative capability of a set of environmental and intrinsic variables on home range patterns.展开更多
基金the financial support provided by the National Social Science Foundation (Grant No.12JJD790032)the Project of the Chinese Ministry of Education (Grant No.13JJD790032)
文摘The Jimo coast encompasses an area of 2157 km^2, and the ecosystem is valuable both socially and economically with regional fisheries substantially contributing to the value. A mass-balanced trophic model consisting of 15 functional ecological groups was developed for the coastal ecosystem using the Ecopath model in Ecopath with Ecosim(Ew E) software(version 6.4.3). The results of the model simulations indicated that the trophic levels of the functional groups varied between 1.0 and 3.76, and the total production of the system was estimated to be 5112.733 t km^(-2) yr^(-1) with a total energy transfer efficiency of 17.6%. The proportion of the total flow originating from detritus was estimated to be 48%, whereas that from primary producers was 52%, indicating that the grazing food chain dominated the energy flow. The ratio of total primary productivity to total respiration in the system was 3.78, and the connectivity index was 0.4. The fin cycling index and the mean path length of the energy flow were 4.92% and 2.57%, respectively, which indicated that the ecosystem exhibits relatively low maturity and stability. The mixed trophic impact(MTI) procedure suggested that the ecological groups at lower trophic levels dominated the feeding dynamics in the Jimo coastal ecosystem. Overfishing is thought to be the primary reason for the degeneration of the Jimo coastal ecosystem, resulting in a decline in the abundance of pelagic and demersal fish species and a subsequent shift to the predominance of lower-trophic-level functional groups. Finally, we offered some recommendations for improving current fishery management practices.
基金supported by the China National 973 Program (Grant No. 2003CB214602)
文摘Segmental perforation is widely used for horizontal wells. However,the flow of fluid in porous media is a complex problem. Using the Fourier transform,principle of potential superposition,trigonometric function transform,asymptotic analyses,a pressure solution of a pseudo steady-state flow model in 3D circular-boxed media has been established. Comparing with the productivity of vertical wells,an equivalence radius model can be obtained. Based on the model,a method of evaluating the productivity of segmental perforation horizontal well is presented by means of principle of superposition. It shows that the equivalence radius is different for various positions of horizontal wells; the output of both ends of horizontal wells is greater than the others under the same length of perforation interval; it is more important to obtain high productivity by increasing the length of perforation interval than enlarging the spacing between perforation intervals. The result of this research can be used to ascertain the yield of each perforated interval.
文摘Animal habitat-use patterns cannot be isolated from scale issues. Consequently, multi-scale studies provide a complete characterization of ecological patterns that can further explain the observed variation. Liolaemus constitutes the world's second most speciose lizard genus. In this study, we assessed the relationships between home range size and environmental variables at 3 different spatial scales. The study at a local and regional scale was focused on the habitat specialist Liolaemus multimaculatus. The lizard's home range was calculated using the minimum convex polygon method in populations from grassland sites of the coastal sand dunes of the Argentinean Pampas under 2 different conditions, with or without forestations of Acacia Iongifolia. On the other hand, at a geographical scale we considered the evolutionary implications of 20 species of Liolaemus. Home range size, phylogeny, ecological, environmental, and climatic data were ob- tained from the literature and remote sensing. L. multimaculatus home range varied from 12.66 to 570.00 m. Regionally, this species had smaller home ranges in forested habitats (X: 94.02 m2) com- pared with the non-forested sites (X: 219.78m2). Habitat structure, vegetation types, and food availability would explain the space use at finer scales. When the 20 species of Liolaernus were considered, high mean air temperature and broad thermal amplitudes showed an inverse relationship with home range size. Neither net primary productivity nor phylogeny was good predictors for home range variation at geographical scale. This study highlights the scale dependence of the explicative capability of a set of environmental and intrinsic variables on home range patterns.